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Abstract

We study the problem of fairly allocating heterogenous items, pri-
orities, positions, or property rights to participants with equal claims
from three perspectives: cooperative, decision theoretic, and non-
cooperative. We characterize the Shapley value of the cooperative
game and then introduce a class of auctions for non-cooperatively al-
locating positions. We show that for any auction in this class, each
bidder obtains his Shapley value when every bidder follows the auc-
tion’s unique maxmin perfect bidding strategy. When information
is incomplete we characterize the Bayesian equilibrium of these auc-
tions, and show that equilibrium play converges to maxmin perfect
play as bidders become infinitely risk averse. The equilibrium alloca-
tions thus converges to the Shapley value allocation as bidders become
risk averse. Together these results provide both decision theoretic and
non-cooperative equilibrium foundations for the Shapley value in an
environment with incomplete information.
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1 Introduction

This paper studies the problem of allocating heterogeneous items, priori-

ties, positions, or rights to participants who have equal claims. Examples

of this type of problem include allocating the priority of service in a queue,

allocating items to heirs in an estate, allocating positions of ads on a web-

page, or allocating fishing rights to different geographical areas. In our en-

vironment, participants have unit demands and a common ranking of the

priorities/items/positions/rights, which we hereafter simply refer to as “po-

sitions.” In particular, all participants agree that one position is the most

desirable, a second position is the next most desirable, and so on. Despite

the common ranking of positions, participants vary in the intensity of their

preferences and these intensities are private information. The problem is to

find an allocation that is effi cient, budget balanced, and fair, with those par-

ticipants receiving more desirable positions compensating the ones receiving

less desirable positions.

We study the allocation problem from three different perspectives. The

first approach, from cooperative game theory, is to characterize the Shapley

value allocation. The second approach is decision theoretic. We introduce a

class of auctions for allocating positions that we call “compensated position

auctions”and we characterize maxmin perfect bidding. Finally, we approach

the problem from the perspective of non-cooperative game theory, and we

characterize Bayes Nash equilibrium of these auctions. We show that these

three solutions to the allocation problem are related in a precise way: for

any compensated position auction, (i) when all bidders follow their maxmin

perfect bidding strategies then the Shapley value allocation results, and (ii)

the allocation obtained in the Bayes Nash equilibrium approaches the Shap-

ley value allocation as bidders become more risk averse. Hence our results

provide decision theoretic and non-cooperative foundations for the Shapley

value in an environment with incomplete information.

Shapley (1953) introduced the notion of a value for a cooperative game,

now called the Shapley value. The Shapley value is a fundamental solution

concept in cooperative game theory with the Shapley allocation often taken as

the benchmark for a fair allocation (see Myerson (1977), Roth (1988), Moulin
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(1992), and Moulin (2004, Chapter 5)). In the position allocation problem,

the Shapley allocation identifies for each player a position and transfer. We

characterize the Shapley value allocation. We show that the transfers as-

sociated with the Shapley allocation can be computed recursively, starting

with the transfer received by the player allocated the worst position, then the

transfer of the player with the second-worst position, and so on. This result is

a consequence of the feature of the position allocation problem that a player

exerts externalities only on players with lower intensities of preferences than

his own.

Suggested by the recursive nature of the Shapley transfers, next we in-

troduce and study a class of dynamic auctions, differentiated by their cost

sharing rules, for allocating positions. An auction takes place over rounds.

At each round, the participants (hereafter “bidders”) simultaneously make

demands for compensation. The bidder with the smallest demand receives

the worst unallocated position, he receives his demand as compensation, and

he exits. His compensation is paid by the remaining bidders, who will even-

tually be allocated better positions, according to the auction’s cost sharing

rule. The auction ends when one position and bidder remain. That bidder

receives the most desirable position, but pays compensation. In sum, bidders

pay compensation to bidders allocated positions worse than their own and

receive compensation from bidders allocated positions better than their own.

The second approach studies bidding behavior in compensated position

auctions when players act to maximize their minimum payoff. We will say

a strategy is “maxmin perfect” if it maximizes a bidder’s minimum pay-

off at every history of play. Maxmin perfection is a natural refinement of

maxmin in dynamic games. We characterize the unique maxmin perfect bid-

ding strategy, showing how it depends on the cost sharing rule. The strategy

has a natural interpretation similar to the solution to the Contested Garment

problem described in the Talmud. Our main result here is that when each

bidder follows his maxmin perfect bidding strategy, then each bidder obtains

his Shapley value allocation. The allocation that obtains is thus independent

of the cost sharing rule.

The last approach studies the Bayes Nash equilibria of compensated po-

sition auctions when bidders are privately informed of their preference in-
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tensities. We provide general necessary conditions for a bidding strategy to

form a symmetric equilibrium in increasing and differentiable strategies. Our

main result here is to provide closed-form solutions for the unique such equi-

librium when bidders are risk neutral and when they are CARA risk averse.

We show that bidders demand less compensation as they become more risk

averse. Furthermore, the equilibrium bidding strategy of CARA risk averse

bidders converges uniformly to the maxmin perfect bidding strategy as bid-

ders become infinitely risk averse. An immediate consequence of this result,

and our earlier result that maxmin bidding yields the Shapley allocation,

is that the equilibrium allocation of any compensated position auction co-

incides with the Shapley value allocation as bidders become infinitely risk

averse. To our knowledge, this paper is the first to provide non-cooperative

foundations for the Shapley value in a setting with incomplete information.

Our focus on Bayesian equilibrium is motivated by the fact that in en-

vironments with quasi-linear preferences there is, in general, no dominant

strategy mechanism (VCG) mechanism that is both effi cient and budget bal-

anced. Importantly, Mitra and Sen (2010) establish necessary and suffi cient

conditions for the existence of such mechanisms when N positions are to be

allocated to N players, who each demand one. In particular, it is necessary

that differences of the positions’inherent values satisfy a linear equation (see

Corollary 1) that has dimension 1 in RN−1, whereas the domain of differences

in our setting has dimension N − 1. In our setting there is (generically) no

dominant strategy, effi cient, and budget balanced mechanism.

Related Literature

Our paper connects to several literatures in cooperative and non-cooperative

game theory.

Queueing: The problem we study reduces to a queuing problem when the

inherent value of position i is −(i−1) for each i ∈ {1, . . . , N}. Queuing prob-
lems satisfy the necessary and suffi cient conditions of Mitra and Sen (2010).

Suijs (1996) identifies a dominant strategy mechanism which is effi cient and

budget balanced, and shows there is no such mechanism which is also indi-

vidually rational.1 Maniquet (2003)’s Lemma 1 provides an expression for

1In fact, Suijs’s result applies to a more general class of “scheduling”problems. Chun,

3



Shapley values in queuing problems; it is special case of our Proposition

1. More significantly, Maniquet (2003) shows that the Shapley allocation

satisfies a collection of fairness axioms that he proposes. In a complete infor-

mation setting, with commonly known waiting costs, Ju, Chun, and van den

Brink (2014) provides a bargaining game which has the Shapley allocation

of the queueing problem as a subgame perfect equilibrium outcome.

Sequential Auctions: Our paper contributes to a literature on multi-unit

sequential auctions with single-unit demands and bidder risk aversion, with

recent contributions by Mezzetti (2011) and Hu and Zou (2015) who provide

conditions for the sequence of prices received by a seller to be increasing or

decreasing. In our setting we study the allocation of positions, items, or

rights when the bidders have equal claims. Although our results apply when

items are homogeneous, our focus is on the heterogeneous case. Further, in

our context there is no seller.

The Assignment Problem: The problem of allocating positions is the as-

signment problem for the special case where all the players rank assignments

in the same way, as is natural for example when assignments correspond to

priorities, e.g., first priority, second priority, etc. Both cooperative and non-

cooperative solutions to the general assignment problem have been studied.

Moulin (1992) shows that the Shapley value has several desirable properties

in cooperative models of assignment games.2

Early examples of non-cooperative approaches to the assignment prob-

lem include Leonard (1983) and Demange, Gale, Sotomayor (1986). Leonard

(1983) provides a mechanism for which it is a dominant strategy for each

player to report his preferences over assignments truthfully and which imple-

ments the effi cient assignment; he shows it generates Vickrey-Clark-Groves

prices. Demange, Gale, Sotomayor (1986) provide a dynamic auction which

implements the effi cient assignment. In the context of internet advertising,

Mitra, and Mutuswami (2019) provide a charaterization of the allocation rule in Suijs

(1996) as the only rule satisfying effi ciency, budget balancedness, equal treatment of equals,

Pareto indifference, and upward-invariance.
2The Shapley value is not the only notion of fairness for assignment games. Alkan, De-

mange, and Gale (1991), for example, study existence of effi cient and envy-free allocations

in the assignment problem.
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important papers by Edelman, Ostrovsky, and Schwarz (2007) and Varian

(2007) study the use of the generalized second-price sealed-bid auction to

allocate positions under complete information. Edelman, Ostrovsky, and

Schwarz (2007) study, in addition, a generalized English auction with incom-

plete information and show that payoffs (both to bidders and to the seller)

are the same as in the Vickrey-Clarke-Groves mechanism.

In all these papers, the seller collects the auction revenue. We study, in

contrast, a setting where there is no seller and the only payments are transfers

between the bidders. Budget balancedness is a fundamental requirement

since the positions are the common property of the bidders.

Non-cooperative Foundations of the Shapley Value: Pérez-Castrillo and

Wettstein (2001) provide a bidding mechanism whose subgame perfect equi-

librium outcomes coincide with the Shapley value payoffs. In bargaining

games with complete information, non-cooperative foundations of the Shap-

ley value have been provided by Gul (1989) and Hart and Mas Colell (1996).

Gul (1989) provides a game with bilateral bargaining and the random selec-

tion of the proposer and shows that, in the effi cient equilibrium of the game,

players receive their Shapley value payoffs in the limit as they become per-

fectly patient. Hart and Mas-Colell (1996) studies a multilateral bargaining

game and shows that players receive their Shapley value payoffs in the limit

as each player’s probability of exogenously exiting from bargaining vanishes.

By contrast, we obtain Shapley value payoffs as bidders become infinitely

risk averse in an environment with incomplete information.

Bidding Rings, Bankruptcy, and Cost/Surplus Sharing: The Shapley

value also appears in the literature on collusion in auctions. Graham, Mar-

shall, and Richard (1990) study bidding rings, for a single item, from both

a cooperative and non-cooperative perspective. In the complete information

cooperative setting, they show that a particular knockout auction gives bid-

ders their Shapley value payoffs.3 They also study equilibrium bidding when

information is incomplete and bidders are risk neutral, and contrast behavior

in that setting to the complete information cooperative environment. Their

knockout auction belongs to the class of compensation auctions we study (for

3Littlechild and Owen (1973) obtains the same payoffs when allocating costs to the

users of an airport runway.
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the special case of only one valuable position and the demand of an exiting

bidder is shared equally among bidders obtaining better positions). Our re-

sults therefore shed additional light on behavior in the bidding rings since

the equilibrium outcome in any compensated position auction (the knockout

auction as well) converges to the Shapley value outcome as bidders become

infinitely risk averse.

Aumann and Maschler (1985) shows that the solutions provided in the

Talmud to three different bankruptcy problems coincide with the nucleoli

of the corresponding cooperative games. These solutions are generalizations

of the solution to the contested garment problem: “Two hold a garment;

one claims it all, the other claims half. Then the one is awarded three-

fourths, the other one-fourth.”In this solution, the lesser claimant concedes

the uncontested half the garment to the greater one, and the remainder is

split equally. In compensated position auctions, at each round all but the

worst remaining position are contested. We show that the maxmin perfect

bid at each round can be interpreted as a demand for equal shares of the

incremental benefits of the contested positions, and in this respect resembles

the solution to the contested garment problem.

Compensated position auctions are reminiscent of serial cost sharing.

Moulin and Shenker (1992) studies the problem of allocating costs when

agents face a production technology with decreasing returns to scale. It

proposes a cost sharing rule in which participants pay equal shares of incre-

mental costs (defined in a particular way) and show that, given this rule,

the game in which the participants announce quantities is dominance solv-

able and equilibrium has several nice properties. The cost sharing rule is

a primitive, part of the description of the game, whereas here the surplus

shares are endogenously determined. In our setting, equilibrium demands

for compensation can be interpreted as (inflated) demands for equal shares

of the incremental benefits of contested positions. When a seller has multiple

heterogeneous units of several goods, Lindsay (2018) proposes a mechanism

for allocating surplus that is based on a modification of the Shapley value. It

features allocations that are ex-post individually rational (and so bidders do

not suffer from the exposure problem) and losing bidders make no payments.

Cake Cutting and Dissolving Partnerships: Although we are concerned
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with the allocation of indivisible heterogenous positions, the class of auctions

we study is inspired by the Dubins and Spanier (1961) moving knife algorithm

for the fair division of a divisible cake. In the fair division problem there

are N participants, each of whom wants cake. To divide the cake, a third

party moves a knife across the cake until some participant cries “stop.”The

participant crying stop receives the cake to the left of the knife and exits,

surrendering his claim to any additional cake. The process then continues

with the remaining participants and cake, repeating until the whole cake is

divided. In our auction, a participant whose demand for compensation is

smallest receives the worst remaining position and compensation equal to

his demand, while surrendering his claim to better positions.

Dividing a cake is analogous to dissolving a partnership. McAfee (1992)

examines the Texas Shootout, a version of divide and choose, for dissolving

two-person partnerships. Van Essen and Wooders (2016) studies a dynamic

compensation auction for dissolving N -person partnerships. Van Essen and

Wooders (2018) studies dual auctions for the dual problems of allocating

homogeneous goods or chores, and relates the two. The present paper stud-

ies the problem of allocating heterogenous positions. None of these papers

concern the Shapley allocation, which is the focus of the present paper.

The rest of the paper proceeds as follows: We provide in Section 2 a de-

scription of the position allocation problem and we identify the Shapley allo-

cation of the associated cooperative game. Section 3 introduces compensated

position auctions. For any given cost sharing rule, Section 4 identifies the

maxmin perfect bidding strategy and shows that bidders obtain their Shap-

ley value allocations when every bidder follows the maxmin perfect bidding

strategy. Our equilibrium results for the Bayesian game when information

is incomplete are in Section 5. Section 6 relates the Shapley value, maxmin,

and equilibrium allocations. We conclude with a discussion in Section 7. All

proofs are in the Appendix.
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2 Shapley Value

N ≥ 2 positions are to be allocated to N players who have equal claims, with

one position to be assigned to each player.4 The positions have inherent

values, denoted by α1, ..., αN , which are commonly known. We order the

positions so that α1 ≥ ... ≥ αN . Positions may be desirable or undesirable,

i.e., we allow a mixture of positive and negative α’s.5 The payoff to a player

whose preference intensity is x, and who receives position i, is αix plus any

net transfer he receives. Hereafter, we will refer to a player’s preference

intensity as his value. In this section it is convenient to order the players so

that x1 ≥ ... ≥ xN . The problem is to effi ciently and fairly allocate positions

to players, while respecting budget balance.

Cooperative game theory provides one solution: allocate positions to max-

imize surplus and make transfers among the players so that each player ob-

tains his Shapley value payoff. The Shapley solution is appealing since it the

only solution satisfying (i) effi ciency, (ii) additivity, (iii) symmetry, and (iv)

no surplus to dummy players. For a general characteristic function v, the

Shapley value φi of player i is

φi =
∑

S⊆{1,...,N}

(|S| − 1)!(N − |S|)!
N !

[v(S)− v(S\{i})] ,

where v(S) gives the value of coalition S. Player i’s Shapley value can be

interpreted as his expected marginal contribution when the grand coalition

is formed by adding players, one at a time, in a random order.

We now describe the Shapley solution to the position allocation problem.

For any coalition S ∈ 2N , let y(S)
1 , ..., y

(S)
|S| be a rearrangement of the values

{xi|i ∈ S} of the members of S such that y(S)
1 ≥ ... ≥ y

(S)
|S| . Surplus is

maximized by assigning players with lower indexes to positions with lower

4This is without loss of generality since, if there are more players than positions, one

can create dummy positions, with α’s equal to zero, until the number of positions equals

the number of players.
5Bogomolnaia, Moulin, Sandomirskiy, and Yanovskaya (2017) study a fair division

problem when the goods to be divided are a mixture of both goods and bads.
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indexes. Following Moulin (1992), the characteristic function

v(S) =

|S|∑
j=1

αjy
(S)
j

defines the cooperative game.

Proposition 1 characterizes Shapley values for the position allocation

problem.

Proposition 1: The Shapley value φi of player i in the position allocation
problem is

φi =
1

i

(
i∑

m=1

αm

)
xi −

N−i∑
m=1

1

i+m− 1

[
i+m−1∑
r=1

r

i+m
(αr − αr+1)xi+m

]
.

Following the interpretation of a player’s Shapley value as being his expected

marginal contribution, the first term in the expression for φi is the expected

gross contribution of player i, while the second term is the expected negative

externality that i imposes on players who, as a result of i joining the coalition,

receive worse positions.

Example 1 provides the Shapley values for the N = 3 problem.

Example 1: Suppose N = 3 and x1 > x2 > x3. The players’Shapley values

are:

φ1 = α1x1 −
1

2
(α1 − α2)x2 −

1

6
(α1 − α2)x3 −

1

3
(α2 − α3)x3,

φ2 =
1

2
(α1 + α2)x2 −

1

6
(α1 − α2)x3 −

1

3
(α2 − α3)x3,

φ3 =
1

3
(α1 + α2 + α3)x3.

If α1 = 6, α2 = 4, and α1 = 2, and x1 = 3/4, x2 = 1/2, and x3 = 1/4,

then φ1 = 15/4, φ2 = 9/4, and φ3 = 1. In the Shapley allocation, player i

receives position i. Players 1, 2, and 3, receive transfers of −3/4, 1/4, and

1/2, respectively.

In addition to its axiomatic foundation as fair, the Shapley value solution

is fair in the sense that it belongs to the “anti-core.”The notion of the anti-

core describes the minimally fair payoffs of a cooperative game. Formally,
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given a characteristic function v a payoff vector (π1, . . . , πN) is in the anti-

core if (i)
∑

i∈N πi = v(N) and (ii) for every coalition S ⊂ N we have that∑
i∈S πi ≤ v(S). In other words, a payoff vector that divides the surplus is

in the anti-core if no coalition S of players receives more than v(S), what

it could obtain if the coalition had complete command over the allocation

of resources. A payoff to a coalition S that exceeded v(S) would require a

subsidy from the members of N\S, who would object on fairness grounds.6

As shown in the following Corollary, a feature of the problem we study

is that Shapley values can be computed recursively, starting with player N

and working backwards.

Corollary 1: The Shapley value payoffs can be written as φi = αixi + τ i for

i = 1, . . . , N , where the transfers τ 1, . . . , τN are defined recursively as

τN =
1

N
(α1 + · · ·+ αN)xN − αNxN

...

τ k =
1

k

[
(α1 + · · ·+ αk)xk −

N∑
i=k+1

τ i

]
− αkxk

...

τ 1 = −τ 2 − τ 3 − · · · − τN .

When written as in Corollary 1, the Shapley value has a natural dynamic

interpretation. Player N’s Shapley value is an equal share of the surplus as

he values it, i.e.,

φN =
1

N
(α1 + · · ·+ αN)xN .

Player N’s Shapley allocation is position N and transfer τN = φN − αNxN .
Following the transfer τN to Player N , the residual surplus is

(α1 + · · ·+ αN−1)xN−1 − τN
6The anti-core of a cooperative game is motivated by normative/fairness considerations,

in contrast to the core which is motivated by strategic considerations. See Moulin (1995,

Chapter 7).
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as Player N − 1 values it, and Player N − 1’s Shapley value is an equal share

of this among the N − 1 remaining players

φN−1 =
1

N − 1
[(α1 + · · ·+ αN−1)xN−1 − τN ] .

In general, given transfers τN , ..., τ k+1, the Shapley value of the player with

the k-th lowest value,

φk = αkxk + τ k =
1

k

[
(α1 + · · ·+ αk)xk −

N∑
i=k+1

τ i

]
,

is an equal share, among the k remaining players, of the residual surplus as

he values it.

The players’Shapley values can also be interpreted as equal shares of

“worst case”residual surpluses. Since player N has the lowest value, φN is

Player N’s evaluation of the worst-case surplus in the sense that surplus is

minimized were all the other players to also have the same value xN . After

Player N has exited, the term φN−1 can likewise be viewed as Player N − 1’s

evaluation of an equal share of the worst-case residual surplus, and so on.

The interpretation of Shapley payoffs as equal shares of worst-case resid-

ual surplus suggests a connection to maxmin play. In particular, dynamic

mechanisms with the property that the maxmin payoff of the active player

with the lowest value is an equal share of the residual surplus are natural

candidates to implement Shapley allocations under maxmin play. The next

section studies a class of auctions with this property.

We conclude this section by noting an attractive feature of the Shapley

transfers: they are “top-down” in the sense that, for any k, the players al-

located the k best positions pay compensation (in aggregate) to the players

receiving worse positions. To see this, note that Moulin (1992, Theorem 2)

established that the general assignment game is concave, and thus the prob-

lem of assigning players to positions is also concave. It follows, by Shapley

(1971, Theorem 7), that the anti-core of the game contains the Shapley value.

Hence, for the players with the k highest values we have

k∑
i=1

(αixi + τ i) =
k∑
i=1

φi ≤ v({1, . . . , k}) =
k∑
i=1

αixi,
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and thus
∑k

i=1 τ i ≤ 0, i.e., the aggregate transfer to the players allocated the

k best positions must be non-positive.

3 Compensated Position Auctions

We now describe a class of auctions for solving the position allocation prob-

lem. These auctions takes place over N − 1 rounds, where at each round the

worst unallocated position is auctioned. At each round t, the active bidders

simultaneously submit (possibly negative) demands for compensation. The

bidder with the smallest demand receives positionN−t+1 and compensation

dt and exits the auction. The compensation dt is paid by the N − t bidders
that have not yet received positions according to a linear cost sharing rule

λt = (λt1, λ
t
2, ..., λ

t
N−t),

where λti is the proportion of dt paid by the bidder who ultimately receives

position i ≤ N− t. We require that for each t = 1, . . . , N−1 that
∑N−t

i=1 λti =

1.7

Bidders have a common utility function u, where u′ > 0 and u′′ ≤ 0. A

bidder with value x who has the smallest demand dt at round t, is allocated

position N − t+ 1 and obtains a payoff of

u

(
αN−t+1x+ dt −

t−1∑
i=1

λiN−t+1di

)
,

where αN−t+1x is the payoff from his position, dt is the compensation he

receives, and
t−1∑
i=1

λiN−t+1di

is the compensation he pays to bidders who exited at prior rounds. In par-

ticular, λiN−t+1di is the compensation he pays to the bidder who exited in

round i. At round N − 1, the final round, the bidder with the largest de-

mand receives the best position, pays compensation to every other bidder,

7The λti’s need not be positive. It is, however, important that only bidders who have

not received positions are liable for dt, i.e., λ
t
N−t+1 = . . . = λtN = 0.
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and obtains a payoff of

u

(
α1x−

N−1∑
i=1

λi1di

)
.

In sum, a bidder who submits the smallest demand surrenders his claim to

more desirable positions and receives compensation from the bidders who

maintain their claims to these positions, while he pays compensation to bid-

ders who have accepted less desirable positions.

Each bidder knows his own value, but not the values of the other bidders,

and observes the smallest demand at each round. A strategy is a list of N−1

functions β = (β1, ..., βN−1), where βt(x; d1, ..., dt−1) gives the demand in the

t-th round of a bidder whose value is x, where d1, . . . , dt−1 are the smallest

demands in previous rounds. We write dt−1 for (d1, . . . , dt−1).

Different cost sharing rules define different auctions. If the compensation

of a bidder who exits the auction at round t is paid entirely by the bidder

who exits at round t + 1 then λtN−t = 1 and λtj = 0 for j = 1, ..., N − t − 1.

If the compensation is paid in equal shares by the bidders obtaining better

positions then λt1 = ... = λtN−t = 1/(N − t).

4 Maxmin

We first take a decision theoretic approach to bidding in compensated po-

sition auctions and ask what payoff a bidder can guarantee himself, i.e.,

his maxmin payoff. While a compensated position auction will have many

maxmin strategies, since the auction is dynamic we focus on “maxmin per-

fect”strategies which maximize a bidder’s minimum payoff at each point in

the auction. In this section we define the notion of a maxmin perfect bidding

strategy and show that any compensated position auction has a unique such

strategy. Our main result is that every bidder obtains his Shapley allocation

when each bidder follows the maxmin bidding strategy.

For a bidder who remains in the auction at round t, let vt(xi, x−i, β
i, β−i;dt−1)

be the bidder’s payoff when his value is xi and he follows the strategy β
i,

when x−i and β
−i are the values and strategies of the remaining bidders, and

dt−1 is the sequence of smallest demands at the prior rounds.
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Definition: A strategy βi guarantees bidder i with value xi a payoff of v̄t
at round t, given dt−1, if vt(xi, x−i, β

i, β−i;dt−1) ≥ v̄t ∀x−i, β−i.

Let v̄t(xi;dt−1) be the largest payoff that bidder i with value xi can guar-

antee at round t given dt−1.

Definition: A strategy βi is a maxmin perfect strategy for bidder i if βi

guarantees v̄t(xi;dt−1) for each t, xi ∈ [0, x̄], and dt−1.

Proposition 2 identifies the unique maxmin perfect strategy and the as-

sociated value for the compensated position auction with cost sharing rule

λ = (λ1, . . . , λN−1).

Proposition 2: Let λ = (λ1, . . . , λN−1) be a cost sharing rule. The strategy

profile β = (β
1
, . . . , β

N−1
) given by

β
t
(x;dt−1) =

N−t∑
m=1

m

N − t+ 1
(αm−αm+1)x−

t−1∑
i=1

[
N−t∑
m=1

m

N − t+ 1
(λim − λim+1)di

]
for each round t is the unique maxmin perfect strategy of the compensated

position auction with cost sharing rule λ. In particular, β guarantees a bidder

with value x, who is active at round t, a payoff of

v̄t(x;dt−1) =

(
α1 + · · ·+ αN−t+1

N − t+ 1

)
x−

t−1∑
i=1

[
λi1 + · · ·+ λiN−t+1

N − t+ 1

]
di,

when dt−1 is the sequence of smallest demands from prior rounds.

Example 2: If demands are paid equally by players obtaining better posi-
tions, then λim− λim+1 = 0 for m = 1, . . . , N − t and the maxmin perfect bid
function in Proposition 2 simplifies to

β
t
(x;dt−1) =

N−t∑
m=1

m

N − t+ 1
(αm − αm+1)x,

and it guarantees

v̄t(x;dt−1) =

(
α1 + · · ·+ αN−t+1

N − t+ 1

)
x−

t−1∑
i=1

1

N − idi.

14



The maxmin perfect strategy β has a natural fairness interpretation akin

to the solution to the contested garment problem. Recall that the solution

to the contest garment problem called for giving each participant the uncon-

tested portion of his demand and splitting the contested portion equally. The

maxmin bid function likewise calls for a bidder to demand an equal share of

the incremental benefits of contested positions.

Consider the bid function in Example 2. At round 1, positions 1 though

N − 1 are contested and position N , the worst position, is uncontested.

There are N − 1 bidders who will be allocated position N − 1 or better

and who will each enjoy an incremental benefit of αN−1 − αN times their

value. A bidder i with value x demands an equal share, 1/N -th, of this

total benefit as he himself values it, i.e., he demands N−1
N

(αN−1 − αN)x.

There are N − 2 bidders who will obtain position N − 2 or better and who

will each enjoy an incremental benefit of αN−2 − αN−1 times their value.

Bidder i demands an equal share of this total benefit too, i.e., he demands
N−2
N

(αN−2 − αN−1)x. Continuing in this fashion, one bidder will obtain

position 1 and enjoy an incremental benefit of α1−α2 times his value. Bidder

i demands an equal share. Adding up these shares of incremental benefits

for the contested positions yields β
1
(x), bidder i’s demand for compensation

at round 1, as

1

N
(α1 − α2)x+ · · ·+ N − 2

N
(αN−2 − αN−1)x+

N − 1

N
(αN−1 − αN)x.

The round t maxmin bid function β
t
has an interpretation analogous to β

1
,

where equal shares are relative to the N − t + 1 bidders and unallocated

positions remaining in the auction.

For general cost sharing rules, to make the interpretation of the bid func-

tion more transparent, we can rewrite the expression for β
t
(x;dt−1) as

β
t
(x;dt−1) =

N−t∑
m=1

m

N − t+ 1

[
(αm − αm+1)x−

t−1∑
i=1

(λim − λim+1)di

]
.

Written this way, one can see that bidders demand in round t an equal share

of incremental “net”benefits of contested positions, where positions differ in

both in their inherent value and in their liabilities for compensation.
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Proposition 3, which follows, provides the decision theoretic foundation of

the Shapley value in compensated position auctions. If all bidders follow the

maxmin perfect bidding strategy, then payoffs are the Shapley value payoffs.

Surprisingly, this result is independent of the cost sharing rule.

Proposition 3: If each bidder follows the maxmin perfect bidding strategy,
then each bidder obtains his Shapley value.

The following example illustrates Proposition 3 and the irrelevance of the

cost sharing rule when there are three bidders.

Example 3: Suppose, as in Example 1 that x1 > x2 > x3. By Proposition

2 the maxmin perfect bidding strategy is

β
1
(x) =

1

3
(α1 − α2)x+

2

3
(α2 − α3)x

β
2
(x; d1) =

1

2
(α1 − α2)x− 1

2
(λ1

1 − λ1
2)d1.

Since λ1
1 + λ1

2 = 1 we can write

β
2
(x; d1) =

1

2
(α1 − α2)x+

[
λ1

2 −
1

2

]
d1.

Bidder 3’s round 1 demand d1 = β
1
(x3) is smallest, he wins position 3, and

he exits after receiving compensation β
1
(x3). His payoff is

α3x3 + β
1
(x3) =

1

3
(α1 + α2 + α3)x3 = φ3.

Bidder 2’s demand β
2
(x2; d1) is smallest at round 2, he wins position 2, and

he exits after receiving compensation β
2
(x2; d1) and paying compensation

λ1
2d1 = λ1

2β1
(x3). His payoff is

α2x2 + β
2
(x2; d1)− λ1

2d1

=
1

2
(α1 + α2)x2 −

1

6
(α1 − α2)x3 −

1

3
(α2 − α3)x3

= φ2.
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Bidder 1 wins position 1 and pays total compensation of d2 + (1 − λ1
2)d1 =

β
2
(x2; d1) + (1− λ1

2)β
1
(x3). His payoff is

α1x1 − d2 − (1− λ1
2)d1

= α1x1 −
1

2
(α1 − α2)x2 −

1

6
(α1 − α2)x3 −

1

3
(α2 − α3)x3

= φ1.

Thus, each bidder receives his Shapley value.

Intuitively, whatever the cost sharing rule, maxmin bids adjust so that

bidders allocated better positions ultimately pay equal shares of the surplus

received by bidder allocated worse positions. In Example 3, this is evident

from the term
[
λ1

2 − 1
2

]
d1 that appears in the bid function β2

(x; d1). If λ1
2

exceeds 1/2, then round 2 demands increase by an amount that exactly offsets

the compensation that the winner of position 2 pays in excess of an equal

share of Bidder 1’s demand.8

5 Equilibrium

In this section we study compensated position auctions in a standard inde-

pendent private values setting. To reduce notation we focus on the com-

pensated position auction in which demands are paid equally by bidders

obtaining better positions, i.e., we assume at each round t that λtj = 1
N−t for

j = 1, . . . , N − t.9 Propositions 4 through 7 are stated for this cost shar-

ing rule. Importantly, Proposition 8, which shows that the equilibrium bid

function converges uniformly to the maximin bid function as bidders become

infinitely risk averse, holds for any cost sharing rule.

8Since it is not apparent in N = 3 example, we note that for general N if a bidder

following the maxmin perfect bidding strategy is allocated position i (at round N − i+1),
then his payoff is independent of λN−ii (the share of the cost dN−i that he pays) but not

λ1i , . . . , λ
N−i−1
i .

9When λtj =
1

N−t for j = 1, . . . , N − t, one can show that equilibrium demands are

always positive. The auction can then equivalently be framed as one in which at each

round the bid ascends from zero. The first bidder to drop receives the worst unallocated

position and receives compensation equal to the price at which he drops.
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Independent Private Values

The bidders’preference intensities (hereafter “values”) are independently

and identically distributed according to cumulative distribution function F

with support [0, x̄], where x̄ < ∞ and f ≡ F ′ is continuous and positive on

[0, x̄]. Let X1, . . . , XN be N independent draws from F . Let Z(N)
1 , . . . , Z

(N)
N

be a rearrangement of the Xi’s such that Z
(N)
1 ≤ Z

(N)
2 ≤ . . . ≤ Z

(N)
N . The

joint density of Z(N)
1 , . . . , Z

(N)
N is

g
(N)
1,...,N(z1, . . . , zN) = N !

∏N

i=1
f(zi)

for z1 ≤ z2 ≤ . . . ≤ zN and g
(N)
1,...,N(z1, . . . , zN) = 0 otherwise. Let G(N)

t denote

the c.d.f. of Z(N)
t , i.e., G(N)

t is the distribution of the t-th lowest of N draws.

The conditional density of Z(N)
t+1 given Z

(N)
1 = z1, . . . , Z

(N)
t = zt is

g
(N)
t+1(zt+1|zt) = (N − t)f(zt+1)

[1− F (zt+1)]N−(t+1)

[1− F (zt)]N−t

if 0 ≤ z1 ≤ . . . ≤ zt+1 and is zero otherwise. Define

ΓNt (z) ≡ g
(N)
t+1(z|z) = (N − t) f(z)

1− F (z)

to be the hazard function.

Necessary Conditions for Equilibrium

Proposition 4 provides necessary conditions for β to be a symmetric equi-

librium in strictly increasing and differentiable bidding strategies. These

conditions are also suffi cient for risk neutral and CARA bidders, as we es-

tablish in Propositions 5 and 6.

Proposition 4:Any symmetric equilibrium β in increasing and differentiable

bidding strategies satisfies the following system of N−1 differential equations:

u′
(
αN−t+1x+ βt(x;dt−1)−

∑t−1

j=1

dj
N − j

)
β′t(x;dt−1)

= −

 u
(
αN−tx+ βt+1(x;dt−1, βt(x;dt−1))− 1

N−tβt(x;dt−1)−
∑t−1

j=1
dj
N−j

)
−u
(
αN−t+1x+ βt(x;dt−1)−

∑t−1
j=1

dj
N−j

) ΓNt (x),

for each t ∈ {1, . . . , N − 1} where βN(x;dN−1) ≡ 0.
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Risk Neutral Bidders

Proposition 5 identifies the equilibrium when bidders are risk neutral. We

write β0
t for the equilibrium bid function.

Proposition 5: Suppose that bidders are risk neutral. The unique sym-

metric equilibrium in increasing and differentiable strategies is given, for

t = 1, . . . , N − 1, by

β0
t (x) =

N − t
N − t+ 1

E
[
(αN−t − αN−t+1)Z

(N)
t + β0

t+1(Z
(N)
t )|Z(N)

t > x > Z
(N)
t−1

]
where β0

N ≡ 0. Equivalently, it is given by

β0
t (x) =

N−t∑
m=1

m

N − t+ 1
E
[
(αm − αm+1)Z

(N)
N−m|Z

(N)
t > x > Z

(N)
t−1

]
.

Equilibrium demands at each round are independent of the smallest demands

at prior rounds.

Observe from the second expression for β0
t that if at some round t all the

remaining positions have the same α’s, i.e., α1 = . . . = αN−t+1, then bids are

zero at round t and every subsequent round. This is intuitive since when the

remaining positions are identical and the number of positions is equal to the

number of remaining bidders, then no position is contested.

The risk neutral bid function β0
t , given in Proposition 5, has a similar form

and interpretation to the maxmin perfect bid function β
t
when demands are

paid equally by players obtaining better positions. At round t > 1, positions

are 1, . . . , N − t are contested. The m-th term of β
t
,

m

N − t+ 1
(αm − αm+1)x,

is an equal share (among the N − t+ 1 active bidders at round t) of the total

benefit obtained by the m bidders allocated position m or better, as a bidder

with value x values it. The m-th term of β0
t ,

m

N − t+ 1
(αm − αm+1)E

[
Z

(N)
N−m|Z

(N)
t > x > Z

(N)
t−1

]
,

is the same except that it is based on a value that is inflated relative to

the bidder’s true value. Risk neutral bidders demand more compensation,
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increasing their expected payoff at the expense of reducing their worst-case

payoff.

Example 4: IfN = 3 and values are distributed U [0, 1], then the equilibrium

bid functions for risk neutral bidders are

β0
1(x) = (α1 − α2)

(
1

6
x+

1

6

)
+ (α2 − α3)

(
1

2
x+

1

6

)
and

β0
2(x) = (α1 − α2)

(
1

3
x+

1

6

)
.

CARA Bidders

The next proposition characterizes equilibrium when bidders have con-

stant absolute risk aversion (CARA), i.e., utility is given by

uθ(x) =
1− e−θx

θ
,

where θ > 0 is the common index of risk aversion. Note that limθ→0 u
θ(x) =

x, i.e., bidders are risk neutral in the limit as θ approaches zero. Denote by

βθt the equilibrium bid function in round t when bidders have CARA index

of risk aversion θ.

Proposition 6: Suppose that bidders are CARA risk averse with index of

risk aversion θ > 0. The unique symmetric equilibrium in increasing and

differentiable strategies is given recursively, for t = 1, . . . , N − 1, by

βθt (x) = − N − t
(N − t+ 1) θ

ln
{
E
[
e−θ[(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )]|Z(N)

t > x > Z
(N)
t−1

]}
where βθN ≡ 0. Equilibrium bids at each round are independent of prior

smallest demands.

Example 5: IfN = 3 and values are distributed U [0, 1], then the equilibrium

bid functions for CARA risk averse bidders are

βθ1(x) = − 2

3θ
ln

{∫ 1

x
e−θ[(α2−α3)z+βθ2(z)]3(1− z)2dz

(1− x)3

}
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and

βθ2(x) = − 1

2θ
ln

{∫ 1

x
e−θ(α1−α2)z2(1− z)dz

(1− x)2

}
.

Bounds and Comparative Statics

Proposition 7 provides upper and lower bounds for the CARA equilibrium

bid functions. The risk neutral bid function β0
t is an upper bound for the

equilibrium bid function of a CARA risk averse bidder while β
t
is a lower

bound: a risk averse bidder submits a smaller demand, and thus accepts less

compensation, than were he risk neutral, but submits a larger demand than

his maxmin perfect demand.

Proposition 7: Suppose that bidders are CARA risk averse with index of

risk aversion θ > 0 and α1 > α2. Then for each t = 1, . . . , N − 1 we have

that

β
t
(x) < βθt (x) < β0

t (x) for x < x̄,

where

β
t
(x) =

N−t∑
m=1

m

N − t+ 1
(αm − αm+1)x.

Proposition 8 shows that demands decrease as bidders become more risk

averse, and that demands converge uniformly to the maxmin demands as

bidders become infinitely risk averse.

Proposition 8: Suppose that bidders are CARA risk averse with index of

risk aversion θ > 0. Then for each t = 1, . . . , N − 1 we have that βθt (x) is

decreasing in θ, and βθt converges uniformly to βt on [0, x̄] as θ →∞.

Figure 1 illustrates propositions 7 and 8 when N = 3, values are distrib-

uted U [0, 1], and α1 = 6, α2 = 4, and α3 = 2. In the figure, the bold solid

lines are the risk neutral bid functions (i.e., θ = 0) for rounds 1 and 2, which

are the upper bounds for CARA risk averse bidders. The dashed lines give β
1

and β
2
, the maximin bid functions. The thin solid lines are the bid functions
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when bidders have CARA index of risk aversion of θ = 10.
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Round 1: θ = 0, 10, and ∞.
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Round 2: θ = 0, 10, and ∞.

Figure 1: CARA Bounds

6 Equilibrium, Maxmin, and the Shapley Value

By Proposition 8, as bidders become infinitely risk averse, the equilibrium

bid function converges to the maxmin perfect bid function β. By Proposition

2, when each bidder follows the maxmin perfect strategy, then each obtains

his Shapley value allocation. Corollary 2 follows immediately.

Corollary 2: As bidders become infinitely risk averse, the equilibrium allo-

cation approaches the Shapley-value allocation.

Since the Shapley value allocation is in the anti-core, these results imply

that the compensated position auction produces allocations in the anti-core

when bidders are suffi ciently risk averse or when each bidder follows the

maxmin perfect strategy. The next example and the associated figure illus-

trate Corollary 2, showing that the bidders’realized payoffs converge to their

Shapley value payoffs as bidders become infinitely risk averse.

22



Example 6: Suppose demands are paid equally by players obtaining better
positions. Figure 2 shows the equilibrium payoff of each bidder as a function

of θ, when α1 = 6, α2 = 4, α3 = 2 and the bidders’values are x1 = 3/4,

x2 = 1/2, and x3 = 1/4. The payoff of bidder 3 is

y3(θ) := α3x3 + βθ1(x3),

of bidder 2 is

y2(θ) := α2x2 + βθ2(x2; βθ1(x3))− 1

2
βθ1(x3),

of bidder 1 is

y1(θ) := α1x1 − βθ2(x2; βθ1(x3))− 1

2
βθ1(x3).

The dashed lines are the bidders’Shapley values.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

y3ÝSÞ

y2ÝSÞ

y1ÝSÞ

S

d1

d2

d3

Figure 2: Equilibrium Payoffs as a Function of θ.

Since the auction is effi cient, each bidder is allocated the same position he

would receive in the Shapley allocation. As θ approaches infinity, each bidder

also receives the same transfer that he would receive in the Shapley alloca-

tion: Bidder 3 receives compensation of β
1
(1/4) = 1/2. Bidder 2 receives

compensation of β
2
(1/2) = 1/2 from Bidder 1, but pays compensation of

1
2
β

1
(1/4) to Bidder 3, for a net transfer of 1/4. Bidder 1 pays compensation

of 1
2
β

1
(1/4) to Bidder 3 and β

2
(1/2) to Bidder 2, for a net transfer of −3/4.

These are exactly the transfers identified in Example 1.
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7 Discussion

This paper proposes compensated position auctions as a solution to the prob-

lem of fairly allocating heterogeneous items, priorities, positions, or rights

among participants who have equal claims. Compensated position auctions

are effi cient and budget balanced. From a purely theoretical perspective

these auctions are of interest since they provide decision theoretic and non-

cooperative foundations for the Shapley value in an environment with incom-

plete information. Since the equilibrium allocation approaches the Shapley

allocation as bidders become risk averse, then for suffi ciently risk averse bid-

ders the equilibrium allocation is (i) in the anti-core and (ii) transfers have

the “top-down”property discussed in Section 2, when the Shapley payoffs

are in the interior of the anti-core.

Participation in the auction is individually rational for a bidder when

the (natural) alternative, since bidders have common claims, is the random

assignment of positions. Following the maxmin perfect bidding strategy,

by Proposition 2 a bidder with value x guarantees himself a payoff of at

least v̄1(x) = 1
N

∑N
m=1 αmx and a utility of at least u( 1

N

∑N
m=1 αmx). His

equilibrium expected utility is therefore at least u( 1
N

∑N
m=1 αmx) since it

must exceed his maxmin utility. Concavity of u implies that

u(
1

N

N∑
m=1

αmx) ≥ 1

N

N∑
m=1

u(αmx),

and thus bidders prefer the compensated position auction to the random

allocation of positions.

There may be other auctions whose Bayes Nash equilibria converge to

the Shapley value as bidders become infinitely risk averse and which gen-

erate Shapley value allocations under maxmin play. It is easy, however, to

construct auctions that do not have these properties. Consider, for example,

the auction in which all bidders simultaneously make sealed bids, the high-

est bidder gets the best position, the second highest bidder gets the second

best position, and so on. Suppose further that only the highest bidder pays

his bid and his bid is divided equally among all the bidders. If the auction

has a symmetric equilibrium in increasing strategies, then the auction will

be effi cient and budget balanced. It cannot, however, generate the Shapley
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allocation as all the bidders (except the highest) receive the same net trans-

fer, namely 1/N -th of the highest bid. As Example 1 illustrates, the Shapley

allocation requires different bidders receive different net transfers.

8 Appendix

The proof of Proposition 1 involves combinatorial arguments that play no

role in the remaining proofs. It is included for completeness, but the reader

is invited to skip it.

Proof of Proposition 1: We compute the Shapley value directly using that

φi =
N∑
s=1

(N − s)!(s− 1)!

N !

∑
Bi(s)

(v(S)− v(S\{i}))


where

Bi(s) = {S|i ∈ S and |S| = s}.

We first compute the marginal contribution of player i to coalition S. If

i ∈ S has the j-th highest value in coalition S (i.e., xi = y
(S)
j ) then

v(S)− v(S\{i}) = αjy
(S)
j −

|S|−j∑
m=1

(αj+m−1 − αj+m) y
(S)
j+m

= αjxi −
|S|−j∑
m=1

(αj+m−1 − αj+m) y
(S)
j+m.

This follows since in coalition S player i is assigned the j-th position, players

in S with a smaller index than i stay in the same position they occupied in

S\{i}, and players with a higher index than i move down one position.
Player i’s Shapley value can be written as

φi = cixi −
N−i∑
m=1

δimxi+m,

where ci is of the form

ci = ci1α1 + · · ·+ ciiαi,
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and δim is of the form

δim = δim1 (α1 − α2) + · · ·+ δimi+m−1(αi+m−1 − αi+m).

The term ci is the expected contribution of player i and δimxi+m is the ex-

pected externality that i imposes on player i+m.

We now compute cir for 1 ≤ r ≤ i, which is the contribution of player i

when allocated position r. For each coalition size s, we count the number of

coalitions of size s where i is in position r and multiply this number by the

appropriate Shapley weight. The coeffi cient cir is the sum of these terms over

all s.

The smallest coalitions where i is in position r are coalitions of size r,

and consist of player i and r − 1 players with a smaller index. The largest

coalitions where i is in position r are coalitions of size N − i+ r, and consist

of player i, r−1 players with a smaller index, and N− i players with a larger
index. The number of coalitions of size s where i is placed in position r is(

i− 1

r − 1

)(
N − i
s− r

)
,

where
(
i−1
r−1

)
is the number of ways of choosing r−1 players with index smaller

than i from i− 1 players, and
(
N−i
s−r
)
is the number of ways of choosing s− r

players with index larger than i from N − i players. The Shapley weight for
coalitions of size s is

(s− 1)!(N − s)!
N !

,

and therefore

cir =
N−i+r∑
s=r

(s− 1)!(N − s)!
N !

(
i− 1

r − 1

)(
N − i
s− r

)
.

Summing across positions where player i can be placed yields

ci =

i∑
r=1

[
N−i+r∑
s=r

(s− 1)!(N − s)!
N !

(
i− 1

r − 1

)(
N − i
s− r

)]
αr

=
i∑

r=1

[
1

N

N−i+r∑
s=r

(
i−1
r−1

)(
N−i
s−r
)(

N−1
s−1

) ]
αr

=
1

i

i∑
r=1

αr,
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where the last equality holds by Claim 4 in the Supplemental Appendix.

Next, we compute δimr for 0 < m ≤ N − i and 1 ≤ r < i + m. The

term δimr (αr−αr+1)xi+m will be the expected externality player i imposes on

player i+m by pushing player i+m from r to r+ 1. For each player i+m,

position r, and coalition size s, we count the number of coalitions of size s

where player i pushes player i+m from position r to position r + 1 and we

multiply this number by the appropriate Shapley weight. The coeffi cient δimr
is the sum of these terms over all s.

The smallest coalitions where i pushes i+m from position r to position

r + 1 are coalitions of size r + 1, and consist of player i, player i + m, and

r − 1 other players with smaller index than i + m. The largest coalitions

where i pushes i + m from position r to position r + 1 are coalitions of size

r+ 1 +N − (i+m), and consist of player i, player i+m, r− 1 other players

with index smaller than i + m, and the N − (i + m) players with an index

larger than i + m. The number of coalitions of size s where i pushes i + m

from position r to position r + 1 is(
i+m− 2

r − 1

)(
N − (i+m)

s− (r + 1)

)
,

where
(
i+m−2
r−1

)
is the number of ways of choosing r − 1 players (excluding

player i) with index smaller than i+m, and
(
N−(i+m)
s−(r+1)

)
is the number of ways

of choosing s− (r+ 1) players with index larger than i+m from N − (i+m)

players. The Shapley weight for coalitions of size s is

(s− 1)!(N − s)!
N !

,

and therefore,

δimr =

r+1+N−(i+m)∑
s=r+1

(s− 1)!(N − s)!
N !

(
i+m− 2

r − 1

)(
N − (i+m)

s− (r + 1)

)
.

Summing across positions where player i+m can be placed yields

δim =
i+m−1∑
r=1

r+1+N−(i+m)∑
s=r+1

(s− 1)!(N − s)!
N !

(
i+m− 2

r − 1

)(
N − (i+m)

s− (r + 1)

) (αr − αr+1)

=

i+m−1∑
r=1

 1

N

r+1+N−(i+m)∑
s=r+1

(
i+m−2
r−1

)(
N−(i+m)
s−(r+1)

)(
N−1
S−1

)
 (αr − αr+1) .
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The identity in Claim 4 holds for all i ≤ N . Replacing i with i + m and

r with r + 1 in this identity, and noting that i+m ≤ N also, we obtain the

following new identity

1

N

N+(r+1)−(i+m)∑
s=(r+1)

(
(i+m)− 1

(r + 1)− 1

)(N−(i+m)
s−(r+1)

)(
N−1
s−1

) =
1

i+m
.

Applying this new identity to δim yields

δim =
i+m−1∑
r=1

(
i+m−2
r−1

)(
(i+m)−1
(r+1)−1

)
 1

N

r+1+N−(i+m)∑
s=r+1

(
(i+m)−1
(r+1)−1

)(
N−(i+m)
s−(r+1)

)(
N−1
S−1

)
 (αr − αr+1)

=
1

i+m

i+m−1∑
r=1

(
i+m−2
r−1

)(
i+m−1

r

) (αr − αr+1) .

The total expected externality that player i imposes on the other players

is

N−i∑
m=1

δimxi+m =
N−i∑
m=1

[
1

i+m

i+m−1∑
r=1

(
i+m−2
r−1

)(
i+m−1

r

) (αr − αr+1)

]
xi+m

=
N−i∑
m=1

1

i+m− 1

[
i+m− 1

i+m

i+m−1∑
r=1

(
i+m−2
r−1

)(
i+m−1

r

) (αr − αr+1)

]
xi+m.

Noting that

(i+m− 1)

(
i+m−2
r−1

)(
i+m−1

r

) = (i+m− 1)

(i+m−2)!
(i+m−2−(r−1))!(r−1)!

(i+m−1)!
(i+m−1−r))!r!

= (i+m− 1)

(i+m−2)!
(i+m−1−r)!(r−1)!

(i+m−1)!
(i+m−1−r))!r!

= r,

we can write

N−i∑
m=1

δimxi+m =

N−i∑
m=1

1

i+m− 1

[
i+m−1∑
r=1

r

i+m
(αr − αr+1)xi+m

]
.
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Collecting terms, the Shapley value of player i is

φi =
1

i

(
i∑

m=1

αm

)
xi −

N−i∑
m=1

1

i+m− 1

[
i+m−1∑
r=1

r

i+m
(αr − αr+1)xi+m

]
.

�

Proof of Corollary 1: We first show that

τ k =

[
α1 + · · ·+ αk−1

k
− k − 1

k
αk

]
xk−

N∑
j=k+1

1

j − 1

[
α1 + · · ·+ αj−1

j
− j − 1

j
αj

]
xj.

Clearly true for k = N . Assume that it is true for k = k′ + 1. We show it is

true for k′.

Subclaim: We first establish the following: If for j = k′+1, ..., N we have

τ j = sj −
N∑

m=j+1

1

m− 1
sm,

then

τN + · · ·+ τ k′+1 = sk′+1 +
k′

k′ + 1
sk′+2 + · · ·+ k′

N − 2
sN−1 +

k′

N − 1
sN .

We have τN = sN . Assume that the claim is true for τN + · · · + τ k′+2.

We show it is true for τN + · · ·+ τ k′+1. We have

τN + · · ·+ τ k′+2 = sk′+2 + · · ·+ k′ + 1

N − 2
sN−1 +

k′ + 1

N − 1
sN

and

τ k′+1 = sk′+1 −
1

k′ + 1
sk′+2 − · · · −

1

N − 2
sN−1 −

1

N − 1
sN .

Adding these equations gives us the result.

Define

sj =

[
α1 + · · ·+ αj−1

j
− j − 1

j
αj

]
xj.

Simple algebra shows that

sj =

j−1∑
m=1

m

j
(αm − αm+1)xj
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We show that

τ k′ =

[
α1 + · · ·+ αk′−1

k′
− k′ − 1

k′
αk′

]
xk′−

N∑
j=k′+1

1

j − 1

[
α1 + · · ·+ αj−1

j
− j − 1

j
αj

]
xj,

which we can write as

τ k′ = sk′ −
N∑

j=k′+1

1

j − 1
sj.

We have

τ k′ =
1

k′

[
(α1 + · · ·+ αk′)xk′ −

N∑
i=k′+1

τ i

]
− αk′xk′

=

[
α1 + · · ·+ αk′−1

k′
− k′ − 1

k′
αk′

]
xk′ −

1

k′

N∑
i=k′+1

τ i

By the subclaim

1

k′

N∑
i=k′+1

τ i =
1

k′
sk′+1 +

1

k′ + 1
sk′+2 + · · ·+ 1

N − 2
sN−1 +

1

N − 1
sN .

Hence,

τ k′ = sk′ −
(

1

k′
sk′+1 +

1

k′ + 1
sk′+2 + · · ·+ 1

N − 2
sN−1 +

1

N − 1
sN

)
,

which establishes the claim.

Next we show that φk′ = αk′xk′ + τ k′ , which establishes the Corollary.

αk′xk′ + τ k′ =
α1 + · · ·+ αk′

k′
xk′ −

(
1

k′
sk′+1 +

1

k′ + 1
sk′+2 + · · ·+ 1

N − 2
sN−1 +

1

N − 1
sN

)
=

α1 + · · ·+ αk′

k′
xk′ −

N−k′∑
m=1

1

k′ +m− 1

[
k′+m−1∑
r=1

r

k′ +m
(αr − αr+1)xk′+m

]
,

where we use

sk′+m =
k′+m−1∑
r=1

r

k′ +m
(αr − αr+1)xk′+m.
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Hence αk′xk′ + τ k′ = φk′ as given in Proposition 1. This establishes the

Corollary. �

Proof of Proposition 2: We first show that following β guarantees a bidder
with value x a payoff at round t of at least

v̄t(x;dt−1) =

(
α1 + · · ·+ αN−t+1

N − t+ 1

)
x−

t−1∑
i=1

[
λi1 + · · ·+ λiN−t+1

N − t+ 1

]
di,

when dt−1 is the sequence of smallest demands at prior rounds.

The proof is by induction. Consider round N − 1. A bidder with value

x whose demand is dN−1 either (i) has the smallest demand and obtains a

payoff of

α2x+ dN−1 −
N−2∑
i=1

λi2di

or (ii) his rival has the smallest demand b ≤ dN−1 and he obtains a payoff of

α1x− b−
∑N−2

i=1 λi1di. In the second case, his payoff is at least

α1x− dN−1 −
N−2∑
i=1

λi1di.

The bidder maximizes his minimum payoff when dN−1 satisfies

α2x+ dN−1 −
N−2∑
i=1

λi2di = α1x− dN−1 −
N−2∑
i=1

λi1di,

i.e.,

dN−1 =
α1 − α2

2
x−

N−2∑
i=1

λi1 − λi2
2

di.

Hence at round N − 1 the bidder guarantees himself a payoff of at least

v̄N−1(x;dN−2) =
α1 + α2

2
x−

N−2∑
i=1

λi1 + λi2
2

di

by following

β
N−1

(x;dN−2) =
α1 − α2

2
x−

N−2∑
i=1

λi1 − λi2
2

di.
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Suppose that at round t + 1, given smallest demands dt, a bidder with

value x can guarantee himself at least

v̄t+1(x;dt) =

N−t∑
m=1

αm
N − tx−

t∑
i=1

λi1 + . . .+ λiN−t
N − t di,

by following

β
s
(x;ds−1) =

N−s∑
m=1

m

N − s+ 1
(αm−αm+1)x−

s−1∑
i=1

[
N−s∑
m=1

m

N − s+ 1
(λim − λim+1)di

]

for s = t+ 1, . . . , N − 1. We show that at round t he can guarantee himself

at least

v̄t(x;dt−1) =

(
α1 + · · ·+ αN−t+1

N − t+ 1

)
x−

t−1∑
i=1

[
λi1 + · · ·+ λiN−t+1

N − t+ 1

]
di,

by following

β
s
(x;ds−1) =

N−s∑
m=1

m

N − s+ 1
(αm−αm+1)x−

s−1∑
i=1

[
N−s∑
m=1

m

N − s+ 1
(λim − λim+1)di

]

for s = t, . . . , N − 1.

A bidder with value x whose demand is dt at round t either (i) has the

smallest demand and obtains a payoff of

αN−t+1x+ dt −
t−1∑
i=1

λiN−t+1di,

or (ii) a rival has the smallest demand b ≤ dt and he obtains a payoff of at

least

v̄t+1(x; (dt−1, b)) =

(
α1 + · · ·+ αN−t

N − t

)
x− 1

N − tb−
t−1∑
i=1

[
λi1 + · · ·+ λiN−t

N − t

]
di

≥
(
α1 + · · ·+ αN−t

N − t

)
x− 1

N − tdt −
t−1∑
i=1

[
λi1 + · · ·+ λiN−t

N − t

]
di,

where the first equality holds since λt1 + · · ·+ λtN−t = 1.
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The bidder maximizes his minimum payoff when dt satisfies

αN−t+1x+dt−
t−1∑
i=1

λiN−t+1di =

(
α1 + · · ·+ αN−t

N − t

)
x− 1

N − tdt−
t−1∑
i=1

[
λi1 + · · ·+ λiN−t

N − t

]
di

i.e.,

dt =

(
α1 + · · ·+ αN−t

N − t+ 1
− N − t
N − t+ 1

αN−t+1

)
x

−
t−1∑
i=1

[
λi1 + · · ·+ λiN−t
N − t+ 1

− N − t
N − t+ 1

λiN−t+1

]
di.

Hence at round t the bidder guarantees himself a payoff of at least

v̄t(x;dt−1) = αN−t+1x+ dt −
t−1∑
i=1

λiN−t+1di

=

(
α1 + · · ·+ αN−t+1

N − t+ 1

)
x−

t−1∑
i=1

[
λi1 + · · ·+ λiN−t+1

N − t+ 1

]
di,

by following

β
t
(x;dt−1) =

(
α1 + · · ·+ αN−t

N − t+ 1
− N − t
N − t+ 1

αN−t+1

)
x

−
t−1∑
i=1

[
λi1 + · · ·+ λiN−t
N − t+ 1

− N − t
N − t+ 1

λiN−t+1

]
di

=
N−t∑
m=1

m

N − t+ 1
(αm − αm+1)x−

t−1∑
i=1

[
N−t∑
m=1

m

N − t+ 1
(λim − λim+1)di

]
.

Next, we show that v̄t(x;dt−1) is the largest payoff a bidder with value

x can guarantee at round t given smallest demands dt−1. Suppose to the

contrary he can guarantee himself v′t > v̄t(x;dt−1). If all active bidder have

the same value x then, since the game is symmetric, each such bidder can

guarantee himself at least v′t and hence the total guaranteed payoffs of the

active bidders is at least

(N − t+ 1)v′t > (N − t+ 1)

[(
α1 + · · ·+ αN−t+1

N − t+ 1

)
x−

t−1∑
i=1

[
λi1 + · · ·+ λiN−t+1

N − t+ 1

]
di

]

=
N−t+1∑
m=1

αmx−
t−1∑
i=1

[λi1 + · · ·+ λiN−t+1]di,
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which is a contraction since the RHS is the total surplus that can be obtained

by the active bidders at round t. The first term is the surplus realized from

allocating positions 1 through N− t+1 to the active bidders, and the second

term is the compensation they owe.

We have established that β is a maxmin perfect strategy. Next we show

that β is the unique maxmin perfect strategy. As a first step, we establish

at each round t that a bidder with value x can be held to a payoff v̄t(x;dt−1)

given smallest demands dt−1.

Consider a bidder with value x at round N − 1 given smallest demands

dN−2. Suppose his rival bids βN−1
(x;dN−2). If the bidder demands dN−1 <

β
N−1

(x;dN−2), then his payoff is

α2x+ dN−1 −
N−2∑
i=1

λi2di < α2x+ β
N−1

(x;dN−2)−
N−2∑
i=1

λi2di = v̄N−1(x;dN−2).

If he demands dN−1 > β
N−1

(x;dN−2) then his payoff is

α1x− βN−1
(x;dN−2)−

N−2∑
i=1

λi2di = v̄N−1(x;dN−2).

In both cases, his payoff is at most v̄N−1(x;dN−2), which establishes he is held

to v̄N−1(x;dN−2).

Suppose the claim is true for rounds t+1, . . . , N−1. We show it holds for

round t. Consider a bidder with value x at round t with smallest demands

dt−1. Suppose at each round s = t, . . . , N −1 that each of his rivals demands

β
s
(x;ds−1) at round s given smallest demands ds−1. If at round t the bidder

demands dt < β
t
(x;dt−1) his payoff is

αN−t+1x+dt−
t−1∑
i=1

λiN−t+1di < αN−t+1x+β
t
(x;dt−1)−

t−1∑
i=1

λiN−t+1di = v̄t(x;dt−1).

If he demands dt > β
t
(x;dt−1), then he continues to round t+ 1 and by the

induction hypothesis his rivals hold him to v̄t+1(x;dt−1, βt(x;dt−1)). Straight

forward algebra establishes that

v̄t+1(x;dt−1, βt(x;dt−1)) = v̄t(x;dt−1).
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This establishes the claim holds for all rounds.

Finally, we show that β is the unique maxmin perfect strategy. Suppose

that there is another maxmin perfect strategy β̂ 6= β. Then for some x, t,

and dt−1 we have that β̂t(x;dt−1) 6= β
t
(x;dt−1). Consider a bidder with value

x at round t, given smallest demands dt−1, who follows β̂. Suppose that at

each round s = t, . . . , N − 1 that his rivals bid β
s
(x;ds−1). If β̂t(x;dt−1) <

β
t
(x;dt−1) then bidder i drops out at round t and obtains the payoff

αN−t+1x+β̂t(x;dt−1)−
t−1∑
i=1

λiN−t+1di < αN−t+1x+β
t
(x;dt−1)−

t−1∑
i=1

λiN−t+1di = v̄t(x;dt−1).

If β̂t(x;dt−1) > β
t
(x;dt−1) and his rivals bid (β̂t(x;dt−1) + β

t
(x;dt−1))/2 at

round t and bids β
s
(x;ds−1) at each round s = t + 1, . . . , N − 1 then the

bidder’s payoff at round t is at most

v̄t+1(x;dt−1,
1

2
(β̂t(x;dt−1) + β

t
(x;dt−1)))

by the immediately prior claim. Since

v̄t+1(x;dt−1, dt) =

(
α1 + · · ·+ αN−t

N − t

)
x−

[
λt1 + · · ·+ λtN−t

N − t

]
dt −

t−1∑
i=1

[
λi1 + · · ·+ λiN−t

N − t

]
di

=

(
α1 + · · ·+ αN−t

N − t

)
x− 1

N − tdt −
t−1∑
i=1

[
λi1 + · · ·+ λiN−t

N − t

]
di

is decreasing in dt, we have

v̄t+1(x;dt−1,
1

2
(β̂t(x;dt−1)+β

t
(x;dt−1))) < v̄t+1(x;dt−1, βt(x;dt−1)) = v̄t(x;dt−1),

which contradicts that β̂ is a maxmin perfect strategy. �

Proof of Proposition 3: It is convenient to define

st(x) =
N−t∑
m=1

m

N − t+ 1
(αm − αm+1)x,

which, when positions 1, . . . , N − t+ 1 remain to be allocated, can be inter-

preted as an equal share of incremental benefits of the contested positions to

a bidder with value x. We can also express st(x) as
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st(x) =

[
α1 + · · ·+ αN−t+1

N − t+ 1
− αN−t+1

]
x.

It is straightforward to show that the Shapley transfers satisfy

τN−t+1 = st(xN−t+1)−
t−1∑
i=1

1

N − isi(xN−i+1).

Let dt−1 be the sequence of dropout prices at round t. When all bidders

follow the maxmin bidding strategy, then at round t the active bidders have

values x1, . . . , xN−t+1. The bidder with value xN−t+1 submits the smallest

demand, he receives position N − t + 1 and, by the construction of the

maxmin bid function (see the proof of Proposition 2), his payoff is equal to

his value, i.e., v̄t(xN−t+1;dt−1). In particular, his payoff is

v̄t(xN−t+1;dt−1) =

(
α1 + · · ·+ αN−t+1

N − t+ 1

)
xN−t+1−

t−1∑
i=1

[
λi1 + · · ·+ λiN−t+1

N − t+ 1

]
di.

We show that v̄t(xN−t+1;dt−1) = φN−t+1.

We first show that

t−1∑
i=1

[
λi1 + · · ·+ λiN−t+1

N − t+ 1

]
di =

t−1∑
i=1

1

N − isi(xN−i+1).

Since λt−1
1 + · · ·+ λt−1

N−t+1 = 1, we have

t−1∑
i=1

[
λi1 + · · ·+ λiN−t+1

N − t+ 1

]
di =

1

N − t+ 1
dt−1 +

t−2∑
i=1

[
λi1 + · · ·+ λiN−t+1

N − t+ 1

]
di.

Since the maxmin perfect bid at round t− 1 is

dt−1 = st−1(xN−t+2)−
t−2∑
i=1

[
λi1 + · · ·+ λiN−t+1

N − t+ 2
− N − t+ 1

N − t+ 2
λiN−t+2

]
di,
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we have
∑t−1

i=1

[
λi1+···+λiN−t+1

N−t+1

]
di

=
st−1(xN−t+2)

N − t+ 1
− 1

N − t+ 1

t−2∑
i=1

[
λi1 + · · ·+ λiN−t+1

N − t+ 2
− N − t+ 1

N − t+ 2
λiN−t+2

]
di

+
t−2∑
i=1

[
λi1 + · · ·+ λiN−t+1

N − t+ 1

]
di

=
st−1(xN−t+2)

N − t+ 1
− 1

N − t+ 1

t−2∑
i=1

[
λi1 + · · ·+ λiN−t+1 + λiN−t+2

N − t+ 2
− λiN−t+2

]
di

+

t−2∑
i=1

[
λi1 + · · ·+ λiN−t+1

N − t+ 1

]
di

=
st−1(xN−t+2)

N − t+ 1
− 1

N − t+ 1

t−2∑
i=1

[
λi1 + · · ·+ λiN−t+1 + λiN−t+2

N − t+ 2
− (λi1 + · · ·+ λiN−t+2)

]
di

=
st−1(xN−t+2)

N − t+ 1
+

1

N − t+ 1

t−2∑
i=1

[
λi1 + · · ·+ λiN−t+1 + λiN−t+2

N − t+ 2

]
di.

Hence we have

t−1∑
i=1

[
λi1 + · · ·+ λiN−t+1

N − t+ 1

]
di =

st−1(xN−t+2)

N − t+ 1
+· · ·+s1(xN)

N − 1
=

t−1∑
i=1

1

N − isi(xN−i+1).

Substituting into the expression for v̄t(xN−t+1;dt−1) above, we obtain

v̄t(xN−t+1;dt−1) =

(
α1 + · · ·+ αN−t+1

N − t+ 1

)
xN−t+1 −

t−1∑
i=1

1

N − isi(xN−i+1).

From above,

α1 + · · ·+ αN−t+1

N − t+ 1
xN−t+1 = αN−t+1xN−t+1 + st(xN−t+1)

and

−
t−1∑
i=1

1

N − isi(xN−i+1) = τN−t+1 − st(xN−t+1),

and thus the bidder with value xN−t+1 exits at round t with his Shapley value

payoff

v̄t(xN−t+1;dt−1) = αN−t+1xN−t+1 + τN−t+1 = φN−t+1.
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�

Proof of Proposition 4: Let β = (β1, . . . , βN−1) be a symmetric equilib-

rium in increasing and differentiable strategies. Since equilibrium is in in-

creasing strategies, the sequence of smallest demands (d1, . . . , dt−1) at round

t reveals the t−1 lowest values (z1, . . . , zt−1). In the proof it is convenient to

write the round t equilibrium bid as a function of the prior dropout values

rather than as a function of the prior smallest demands. In particular, we

write βt(x|zt−1) rather than βt(x;dt−1).

For each t < N , let πt(y, x|zt−1) be the expected payoff to a bidder with

value x who in round t deviates from equilibrium and bids as though his

value is y (i.e., he bids βt(y|zt−1)), when zt−1 is the profile of values of the

t − 1 bidders to drop so far. In this case we will sometimes say the bidder

“bids y”. Let

Πt(x|zt−1) = πt(x, x|zt−1)

be the equilibrium payoff of a bidder in round t when his value is x and zt−1

is the profile of values of the t− 1 bidders to drop in prior rounds.

We now derive the necessary conditions in Proposition 4. Let zt−1 be

arbitrary. Consider a bid y. If zt ∈ [zt−1, y] the bidder continues to round

t + 1 and has an expected payoff of Πt+1(x|zt−1, zt). If zt ≥ y he obtains a

payoff of αN−t+1x + βt(y|zt−1) − Σt−1
j=1

1
N−jdj in round t. Hence his expected

payoff is

πt(y, x|zt−1) =
∫ y
zt−1

Πt+1(x|zt−1, zt)g
(N−1)
t (zt|zt−1)dzt

+
∫ x̄
y
u
(
αN−t+1x+ βt(y|zt−1)− Σt−1

j=1
1

N−jdj

)
g

(N−1)
t (zt|zt−1)dzt.

Differentiating with respect to y yields

∂πt(y, x|zt−1)

∂y
= [Πt+1(x|zt−1, y)− u

(
αN−t+1x+ βt(y|zt−1)− Σt−1

j=1
1

N−jdj

)
]g

(N−1)
t (y|zt−1)

+u′
(
αN−t+1x+ βt(y|zt−1)− Σt−1

j=1
1

N−jdj

)
β′t(y|zt−1)(1−G(N−1)

t (y|zt−1)).

A necessary condition for equilibrium is that ∂πt(y, x|zt−1)/∂y|y=x = 0, i.e.,

[Πt+1(x|zt−1, x)− u
(
αN−t+1x+ βt(x|zt−1)− Σt−1

j=1
1

N−jdj

)
]g

(N−1)
t (x|zt−1)

+u′
(
αN−t+1x+ βt(x|zt−1)− Σt−1

j=1
1

N−jdj

)
β′t(x|zt−1)(1−G(N−1)

t (x|zt−1)) = 0.
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Since

Πt+1(x|zt−1, x) = πt+1(x, x|zt−1, x)

= u

(
αN−tx+ βt+1(x|zt−1, x)− 1

N − tβt(x|zt−1)− Σt−1
j=1

1

N − j dj
)

the necessary condition can be written as

u′
(
αN−t+1x+ βt(x|zt−1)− Σt−1

j=1

1

N − j dj
)
β′t(x|zt−1)

= −

 u
(
αN−tx+ βt+1(x|zt−1, x)− 1

N−tβt(x|zt−1)− Σt−1
j=1

1
N−jdj

)
−u
(
αN−t+1x+ βt(x|zt−1)− Σt−1

j=1
1

N−jdj

) ΓNt (x),

where βN(x; zN−1) ≡ 0. Replacing zt−1 with dt−1 and the x in βt+1(x|zt−1, x)

with βt(x|dt−1) yields the differential equation given in the Proposition for

round t. �

Proof of Proposition 5: We first show that the bidding functions in Propo-
sition 5 satisfies the system of differential equations in Proposition 4. The

proof is by induction. Consider round N − 1. The differential equation for

round N − 1 is

β0′
N−1(x|zN−2) = −[(α1 − α2)x− 2β0

N−1(x|zN−2)]ΓNN−1(x). (1)

The unique solution is

β0
N−1(x) =

1

2

∫ x̄
x

(α1 − α2) z2f(z)(1− F (z))dz

(1− F (x))2

=
1

2
E
[
(α1 − α2)Z

(N)
N−1|Z

(N)
N−1 > x > Z

(N)
N−2

]
,

which is β0
N−1(x), as given in Proposition 5.

Suppose β0
t+1, . . . , β

0
N−1 are as given in Proposition 5 for round t+1, . . . , N−

1. Consider round t. The differential equation in Proposition 4 for round t,

using the notation from the proof of Proposition 4, is

β0′
t (x|zt−1) = −

[
(αN−t − αN−t+1)x+ β0

t+1(x|zt−1, x)− N − t+ 1

N − t β0
t (x|zt−1)

]
ΓNt (x).

39



Since β0
t+1(x|zt−1, x) is independent of (zt−1, x), we can write

β0′
t (x) = −

[
(αN−t − αN−t+1)x+ β0

t+1(x)− N − t+ 1

N − t β0
t (x)

]
ΓNt (x).

The unique solution is

β0
t (x) =

N − t
N − t+ 1

∫ x̄

x

(
(αN−t − αN−t+1)z + β0

t+1(z)
)

(N − t+ 1)f(z)(1− F (z))N−t

(1− F (x))N−t+1
dz

=
N − t

N − t+ 1
E
[
(αN−t − αN−t−1)Z

(N)
t + β0

t+1(Z
(N)
t )|Z(N)

t > x > Z
(N)
t−1

]
=

N−t∑
m=1

m

N − t+ 1
E
[
(αm − αm+1)Z

(N)
N−m|Z

(N)
t > x > Z

(N)
t−1

]
,

where the second equality restates the first equality as an expected value.

The third equality is established as Claim 5 in the Supplemental Appendix.

This establishes the result for round t and hence, by induction, the result for

all t.

Next we establish that the bidding strategies are an equilibrium. It is

suffi cient to show that the following three-part claim holds for every t:

1. If x ≥ zt−1 then x ∈ arg maxy πt(y, x|zt−1), i.e., it is optimal for a

bidder with value x to bid β0
t (x) in round t.

2. If x < zt−1 then zt−1 ∈ arg maxy πt(y, x|zt−1).

3. dΠt(x|zt−1)
dx

≥ αN−t+1.

Parts 2 and 3 are ancillary results needed to establish Part 1 for rounds

prior to the last round. Part 2 is necessary to evaluate the consequence at

round t of a bid y greater than the equilibrium bid x. In this case, a rival

bidder with value zt > x may drop out before the bidder, and we need to

evaluate the consequence for his optimal bid in round t + 1. Part 2 shows

that in this event it is optimal for the bidder to bid zt (rather than x) in

round t+ 1.

The proof is by induction. Consider round N − 1. Any bid below zN−2

is strictly dominated by a bid of zN−2 since both bids result in the same
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position while a bid of zN−2 yields higher compensation. Suppose y ≥ zN−2.

When bidders are risk neutral we have

πN−1(y, x|zN−2) =
y∫

zN−2

(
α1x− β0

N−1(zN−1)− ΣN−2
j=1

1
N−jdj

)
g

(N−1)
N−1 (zN−1|zN−2)dzN−1

+
x̄∫
y

(
α2x+ β0

N−1(y)− ΣN−2
j=1

1
N−jdj

)
g

(N−1)
N−1 (zN−1|zN−2)dzN−1.

Differentiating with respect to y yields ∂πN−1(y, x|zN−2)/∂y =

(α1x− β0
N−1(y)− ΣN−2

j=1
1

N−jdj)g
(N−1)
N−1 (y|zN−2)

− (α2x+ β0
N−1(y)− ΣN−2

j=1
1

N−jdj)g
(N−1)
N−1 (y|zN−2)

+ β0′
N−1(y)(1−G(N−1)

N−1 (y|zN−2)).

Substituting the differential equation (1)

β0′
N−1(y) = −[(α1 − α2)y − 2β0

N−1(y)]ΓNN−1(y) (2)

into the expression for ∂πN−1(y, x|zN−2)/∂y yields

∂πN−1(y, x|zN−2)/∂y = (α1 − α2)(x− y)g
(N−1)
N−1 (y|zN−2).

If y < x then ∂πN−1(y, x|zN−2)/∂y > 0, and if y > x then ∂πN−1(y, x|zN−2)/∂y <

0. Thus x ≥ zN−2 implies x ∈ arg maxy πN−1(y, x|zN−2), which establishes

Part 1.

If x < zN−2, then any bid below zN−2 is strictly dominated. For any bid

y ≥ zN−2 then y > x and the above argument establishes ∂πN−1(y, x|zN−2)/∂y <

0 for all y ≥ zN−2, i.e., zN−2 ∈ arg maxy πN−1(y, x|zN−2). This establishes

Part 2.

By the Envelope Theorem

dΠN−1(x|zN−2)

dx
=

∂πN−1(y, x|zN−2)

∂x

∣∣∣∣
y=x

= α1G
(N−1)
N−1 (x|zN−2) + α2(1−G(N−1)

N−1 (x|zN−2))

≥ α2,

which establishes Part 3. This completes the claim for round N − 1.

Assume the three-part claim is true for rounds t+ 1 through N − 1. We

show it is true for round t. Let zt−1 be a sequence of dropout values. Suppose
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x ≥ zt−1. Consider an active bidder in the t-th round whose value is x and

who bids y. A bid below zt−1 is dominated. Since his payoff function differs

in each case, we need to distinguish (i) y ∈ [zt−1, x] and (ii) y > x. In what

follows, we denote the payoff to a bid of y as πLt (y, x|zt−1) if y ∈ [zt−1, x] and

as πHt (y, x|zt−1) if y ≥ x.

Case (i): Consider a bid y ∈ [zt−1, x]. If the next highest value of a rival

bidder is zt ∈ [zt−1, y], then the bidder continues to round t+1 where, by the

induction hypothesis, he optimally bids x and he has an expected payoff of

Πt+1(x|zt−1, zt). If zt ≥ y he obtains a payoffof αN−t+1x+β0
t (y)−Σt−1

j=1
1

N−jdj

in round t. Hence his payoff is

πLt (y, x|zt−1) =
∫ y
zt−1

Πt+1(x|zt−1, zt)g
(N−1)
t (zt|zt−1)dzt

+
∫ x̄
y

(
αN−t+1x+ β0

t (y)− Σt−1
j=1

1
N−jdj

)
g

(N−1)
t (zt|zt−1)dzt.

Differentiating with respect to y yields

∂πLt (y, x|zt−1)

∂y
= [Πt+1(x|zt−1, y)−

(
αN−t+1x+ β0

t (y)− Σt−1
j=1

1
N−jdj

)
]g

(N−1)
t (y|zt−1)

+β0′
t (y)(1−G(N−1)

t (y|zt−1)).

By the induction hypothesis we have

∂2πLt (y, x|zt−1)

∂x∂y
=

(
dΠt+1(x|zt−1, y)

dx
− αN−t+1

)
g

(N−1)
t (y|zt−1) ≥ 0.

Case (ii): Consider a bid y ≥ x. If the next highest value of a rival bidder

is zt ∈ [zt−1, x], then the bidder continues to round t+1 and, by the induction

hypothesis, he bids x and obtains Πt+1(x|zt−1, zt). If zt ∈ [x, y], then he

continues to round t + 1 and, by the part 2 of the induction hypothesis, he

optimally bids zt, he wins position N− t, and obtains compensation β0
t+1(zt).

His payoff is αN−tx+ β0
t+1(zt) − 1

N−tβ
0
t (zt) − Σt−1

j=1
1

N−jdj. If zt > y, then in

round t his payoff is αN−t+1x+ β0
t (y|zt−1) − Σt−1

j=1
1

N−jdj. Thus his expected

payoff at round t is

πHt (y, x|zt−1) =
∫ x
zt−1

Πt+1(x|zt−1, zt)g
(N−1)
t (zt|zt−1)dzt

+
∫ y
x

(
αN−tx+ β0

t+1(zt)− 1
N−tβ

0
t (zt)− Σt−1

j=1
1

N−jdj

)
g

(N−1)
t (zt|zt−1)dzt

+
∫ x̄
y

(
αN−t+1x+ β0

t (y)− Σt−1
j=1

1
N−jdj

)
g

(N−1)
t (zt|zt−1)dzt.
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Differentiating with respect to y yields

∂πHt (y, x|zt−1)

∂y
=

[(
(αN−t − αN−t+1)x+ β0

t+1(y)− N − t+ 1

N − t β0
t (y)

)]
g

(N−1)
t (y|zt−1)

+β0′
t (y)(1−G(N−1)

t (y|zt−1)).

Since αN−t − αN−t+1 ≥ 0 then

∂2πHt (y, x|zt−1)

∂x∂y
= (αN−t − αN−t+1)g

(N−1)
t (y|zt−1) ≥ 0.

We have shown that
∂πHt (y, x|zt−1)

∂y

∣∣∣∣
y=x

=
∂πLt (y, x|zt−1)

∂y

∣∣∣∣
y=x

= 0

and
∂2πLt (y, x|zt−1)

∂x∂y
≥ 0 for y ≤ x and

∂2πHt (y, x|zt−1)

∂x∂y
≥ 0 for y ≤ x.

hence by Lemma 0 in Van Essen andWooders (2016) we have x ∈ arg maxy∈[zt−1,x̄] πt(y, x|zt−1).

This establishes Part 1 for round t.

Suppose x < zt−1. Any y < zt−1 is strictly dominated by a bid of zt−1.

For y ≥ zt−1 we can write

πt(y, x|zt−1) =
∫ y
zt−1

(
αN−tx+ β0

t+1(zt)− 1
N−tβ

0
t (zt)− Σt−1

j=1
1

N−jdj

)
g

(N−1)
t (zt|zt−1)dzt

+
∫ x̄
y

(
αN−t+1x+ β0

t (y)− Σt−1
j=1

1
N−jdj

)
g

(N−1)
t (zt|zt−1)dzt.

Differentiating with respect to y and replacing β0′

t (y) with the equilibrium

differential equation yields

∂πt(y, x|zt−1)

∂y
= (αN−t − αN−t+1) (x− y) g

(N−1)
t (y|zt−1) ≤ 0

since y > x and αN−t − αN−t+1 ≥ 0. Hence, if x < zt−1 then zt−1 ∈
arg maxy πt(y, x|zt−1). This establishes Part 2 for round t.

Finally, by the Envelope Theorem, we have

dΠt(x|zt−1)

dx
=

∂πLt (y, x|zt−1)

∂x

∣∣∣∣
y=x

=
∂πHt (y, x|zt−1)

∂x

∣∣∣∣
y=x

=

∫ x

zt−1

dΠt+1(x|zt−1, zt)

dx
g

(N−1)
t (zt|zt−1)dzt + αN−t+1(1−G(N−1)

t (x|zt−1)

≥ αN−tG
(N−1)
t (x|zt−1) + αN−t+1(1−G(N−1)

t (x|zt−1)

≥ αN−t+1
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where the first inequality follows from the induction hypothesis and the sec-

ond inequality follows since αN−t ≥ αN−t+1. This establishes Part 3 for round

t, and completes the proof by induction. �

Proof of Proposition 6: We first show that the bidding functions given in
Proposition 6 are the unique solution to the system of differential equations

in Proposition 4 when bidders have CARA utility. The proof is by induction.

Consider round N − 1. The differential equation for round N − 1 is

−θe−θ[α2x+βθN−1(x|zN−2)−ΣN−2
j=1

1
N−j dj ]βθ′N−1(x|zN−2) =

[e−θ[α2x+βθN−1(x|zN−2)−ΣN−2
j=1

1
N−j dj ] − e−θ[α1x−βθN−1(x|zN−2)−ΣN−2

j=1
1

N−j dj ]]ΓNN−1(x).

Dividing both sides by e−θ[α2x−βθN−1(x|zN−2)−ΣN−2
j=1

1
N−j dj ] yields

−θe−2θβθN−1(x|zN−2)βθ′N−1(x|zN−2) = [e−2θβθN−1(x|zN−2) − e−θ(α1−α2)x]ΓNN−1(x).

Multiplying both sides by 2(1− F (x))2 yields

−2(1− F (x))2θe−2θβθN−1(x|zN−2)βθ′N−1(x|zN−2)

= 2f(x)(1− F (x))[e−2θβθN−1(x|zN−2) − e−θ(α1−α2)x].

Rearranging

−2θ(1− F (x))2e−2θβθN−1(x|zN−2)βθ′N−1(x|zN−2)− 2f(x)(1− F (x))e−2θβθN−1(x|zN−2)

= −e−θ(α1−α2)x2f(x)(1− F (x)).

or

d

dx

(
e−2θβθN−1(x|zN−2)(1− F (x))2

)
= −e−θ(α1−α2)x2f(x)(1− F (x)).

By the Fundamental Theorem of Calculus

e−2θβθN−1(x|zN−2)(1− F (x))2 =

∫ x

0

−e−θ(α1−α2)s2f(s)(1− F (s))ds+ C.

Since the LHS is zero at x = x̄ then

C =

∫ x̄

0

e−θ(α1−α2)s2f(s)(1− F (s))ds.
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The unique solution βθN−1(x|zN−2) therefore satisfies

e−2θβθN−1(x|zN−2)(1− F (x))2 =

∫ x̄

x

e−θ(α1−α2)s2f(s)(1− F (s))ds.

Rearranging yields

βθN−1(x) = − 1

2θ
ln

(∫ x̄
x
e−θ[(α1−α2)s]2f(s)(1− F (s))ds

(1− F (x))2

)
= − 1

2θ
ln
(
E
[
e−θ(α1−α2)Z

(N)
N−1|Z(N)

N−1 > x > Z
(N)
N−2

])
,

which is βθN−1(x), as given in Proposition 6.

Suppose βθt+1, . . . , β
θ
N−1 are as given in Proposition 6 for rounds t +

1, . . . , N − 1. Consider round t. The differential equation in the proof of

Proposition 4 for round t is

u′
(
αN−t+1x+ βθt (x|zt−1)−

∑t−1

j=1

1

N − j dj
)
βθ′t (x|zt−1)

= −

 u
(
αN−tx+ βθt+1(x)− 1

N−tβ
θ
t (x|zt−1)−

∑t−1
j=1

1
N−jdj

)
−u
(
αN−t+1x+ βθt (x|zt−1)−

∑t−1
j=1

1
N−jdj

) ΓNt (x),

where we have used that βθt+1(x) is independent of zt by the induction hy-

pothesis. We have

θe−θ[αN−t+1x+βθt (x|zt−1)−
∑t−1
j=1

1
N−j dj ]βθ′t (x|zt−1)

= −
[
e−θ[αN−t+1x+βθt (x|zt−1)−

∑t−1
j=1

1
N−j dj ] − e−θ[αN−tx+βθt+1(x)− 1

N−tβ
θ
t (x|zt−1)−

∑t−1
j=1

1
N−j dj ]

]
ΓNt (x).

Dividing both sides by e−θ[αN−t+1x− 1
N−tβ

θ
t (x|zt−1)−

∑t−1
j=1

1
N−j dj ] yields

−θe−θ
N−t+1
N−t βθt (x|zt−1)βθ′t (x|zt−1)

= [e−θ
N−t+1
N−t βθt (x|zt−1) − e−θ[(αN−t−αN−t+1)x+βθt+1(x)]](N − t) f(x)

1− F (x)
.

Multiplying both sides by N−t+1
N−t (1− F (x))N−t+1 yields

−θN − t+ 1

N − t (1− F (x))N−t+1e−θ
N−t+1
N−t βθt (x|zt−1)βθ′t (x|zt−1)

= [e−θ
N−t+1
N−t βθt (x|zt−1) − e−θ[(αN−t−αN−t+1)x+βθt+1(x)]](N − t+ 1)(1− F (x))N−tf(x).
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This equation can be rewritten as

−θN − t+ 1

N − t (1− F (x))N−t+1e−θ
N−t+1
N−t βθt (x|zt−1)βθ′t (x|zt−1)

−e−θ
N−t+1
N−t βθt (x|zt−1)(N − t+ 1)(1− F (x))N−tf(x)

= −e−θ[(αN−t−αN−t+1)x+βθt+1(x)](N − t+ 1)(1− F (x))N−tf(x),

i.e.,

d

dx
((1−F (x))N−t+1e−θ

N−t+1
N−t βθt (x|zt−1)) = −e−θ[(αN−t−αN−t+1)x+βθt+1(x)](N−t+1)(1−F (x))N−tf(x).

By the Fundamental Theorem of Calculus

(1− F (x))N−t+1e−θ
N−t+1
N−t βθt (x|zt−1)

=

∫ x

0

−e−θ[(αN−t−αN−t+1)s+βθt+1(s)](N − t+ 1)(1− F (s))N−tf(s)ds+ C.

Since the LHS is zero at x = x̄ then

C =

∫ x̄

0

e−θ[(αN−t−αN−t+1)s+βθt+1(s)](N − t+ 1)(1− F (s))N−tf(s)ds.

Hence the unique solution βθt (x|zt−1) satisfies

(1−F (x))N−t+1e−θ
N−t+1
N−t βθt (x|zt−1) =

∫ x̄

x

e−θ[(αN−t−αN−t+1)s+βθt+1(s)](N−t+1)(1−F (s))N−tf(s)ds.

Thus

βθt (x) = − N − t
(N − t+ 1)θ

ln

(∫ x̄

x

e−θ[(αN−t−αN−t+1)s+βθt+1(s)](N − t+ 1)
(1− F (s))N−t

(1− F (x))N−t+1
f(s)ds

)
= − N − t

(N − t+ 1)θ
ln

{
E

[
e
−θ
(

(αN−t−αN−t+1)Z
(N)
t +βθt+1(Z

(N)
t )

)
|Z(N)

t > x > Z
(N)
t−1

]}
,

which establishes the result for round t and hence, by induction, the result

for all t.

Next we establish that the bidding strategies are an equilibrium. It is

suffi cient to show that the following two-part claim holds for every t:

1. If x ≥ zt−1 then x ∈ arg maxy πt(y, x|zt−1), i.e., it is optimal for a

bidder with value x to bid βθt (x) in round t.
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2. If x < zt−1 then zt−1 ∈ arg maxy πt(y, x|zt−1).

The proof is by induction. Consider round N−1. Suppose that x ≥ zN−2.

Consider an active bidder whose value is x and who bids y. Any bid below

zN−2 is strictly dominated by a bid of zN−2 since both bids result in the same

position while a bid of zN−2 yields higher compensation. Hence consider bids

y ≥ zN−2.

With a bid of y the bidder wins Position 1 and obtains α1x−βθN−1(zN−1)−
ΣN−2
j=1

1
N−jdj if y > zN−1, and he obtains α2x + βθN−1(y) − ΣN−2

j=1
1

N−jdj if

y < zN−1. Hence

πN−1(y, x|zN−2) =
y∫

zN−2

u
(
α1x− βθN−1(zN−1)− ΣN−2

j=1
1

N−jdj

)
g

(N−1)
N−1 (zN−1|zN−2)dzN−1

+
x̄∫
y

u
(
α2x+ βθN−1(y)− ΣN−2

j=1
1

N−jdj

)
g

(N−1)
N−1 (zN−1|zN−2)dzN−1.

Differentiating with respect to y yields ∂πN−1(y, x|zN−2)/∂y =

u(α1x− βθN−1(y)− ΣN−2
j=1

1
N−jdj)g

(N−1)
N−1 (y|zN−2)

− u(α2x+ βθN−1(y)− ΣN−2
j=1

1
N−jdj)g

(N−1)
N−1 (y|zN−2)

+ u′(α2x+ βθN−1(y)− ΣN−2
j=1

1
N−jdj)β

θ′
N−1(y)(1−G(N−1)

N−1 (y|zN−2)).

(3)

The necessary condition given in Proposition 4 for the general utility function

u is

u′
(
α2y + βθN−1(y)−

∑N−2

j=1

1

N − j dj
)
βθ′N−1(y)

= −

 u
(
α1y − βθN−1(y)−

∑N−2
j=1

1
N−jdj

)
−u
(
α2y + βθN−1(y)−

∑N−2
j=1

1
N−jdj

) ΓNN−1(y).

Substituting this expression into ∂πN−1(y, x|zN−2)/∂y yields

u(α1x− βθN−1(y)− ΣN−2
j=1

1
N−jdj)g

(N−1)
N−1 (y|zN−2)

− u(α2x+ βθN−1(y)− ΣN−2
j=1

1
N−jdj)g

(N−1)
N−1 (y|zN−2)

− u′(α2x+βθN−1(y)−ΣN−2
j=1

1
N−j dj)

u′(α2y+βθN−1(y)−ΣN−2
j=1

1
N−j dj)

 u
(
α1y − βθN−1(y)−

∑N−2
j=1

1
N−jdj

)
−u
(
α2y + βθN−1(y)−

∑N−2
j=1

1
N−jdj

)  g(N−1)
N−1 (y|zN−2).
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This derivative has the same sign as

u(α1x− βθN−1(y)− ΣN−2
j=1

1
N−jdj)− u(α2x+ βθN−1(y)− ΣN−2

j=1
1

N−jdj)

− u′(α2x+βθN−1(y)−ΣN−2
j=1

1
N−j dj)

u′(α2y+βθN−1(y)−ΣN−2
j=1

1
N−j dj)

 u
(
α1y − βθN−1(y)−

∑N−2
j=1

1
N−jdj

)
−u
(
α2y + βθN−1(y)−

∑N−2
j=1

1
N−jdj

)  .
Using that u(x) has CARA we can write

u′(α2x+ βθN−1(y)− ΣN−2
j=1

1
N−jdj)

u′(α2y + βθN−1(y)− ΣN−2
j=1

1
N−jdj)

= e−θα2(x−y).

We can write

u(α1x− βθN−1(y)− ΣN−2
j=1

1

N − j dj)− u(α2x+ βθN−1(y)− ΣN−2
j=1

1

N − j dj)

as
e−θ[α2x+βθN−1(y)−ΣN−2

j=1
1

N−j dj ] − e−θ[α1x−βθN−1(y)−ΣN−2
j=1

1
N−j dj ]

θ
.

Hence the sign of the derivative is the same as the sign of

e−θ[α2x+βθN−1(y)−ΣN−2
j=1

1
N−j dj ] − e−θ[α1x−βθN−1(y)−ΣN−2

j=1
1

N−j dj ]

−e−θα2(x−y)
(
e−θ[α2y+βθN−1(y)−ΣN−2

j=1
1

N−j dj ] − e−θ[α1y−βθN−1(y)−ΣN−2
j=1

1
N−j dj ]

)
.

We can rewrite this as

−e−θ[α1x−βθN−1(y)−ΣN−2
j=1

1
N−j dj ] + e−θα2(x−y)e−θ[α1y−βθN−1(y)−ΣN−2

j=1
1

N−j dj ]

which has the same sign as

−e−θα1x + e−θα2(x−y)e−θα1y

which has the same sign as

−e−θα1(x−y) + e−θα2(x−y).

Since α1 > α2, this expression is positive if y < x and is negative if y > x.

Thus ∂πN−1(y, x|zN−2)/∂y > 0 if y < x and ∂πN−1(y, x|zN−2)/∂y < 0 if

y > x.

We have shown if x ≥ zN−2 then x ∈ arg maxy πN−1(y, x|zN−2), which

establishes part 1 of the two-part claim. If x < zN−2, then y ≥ zN−2 (since
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any bid below zN−2 is strictly dominated) implies y ≥ zN−2 > x and the above

argument establishes bidding zN−2 is optimal since ∂πN−1(y, x|zN−2)/∂y < 0

for all y ≥ zN−2, i.e., zN−2 ∈ arg maxy πN−1(y, x|zN−2). This establishes part

2 of the two-part claim for round N − 1.

Assume the two-part claim is true for rounds t + 1 through N − 1. We

show it is true for round t. Let zt−1 be arbitrary. Suppose x ≥ zt−1. Consider

an active bidder in the t-th round whose value is x and who bids as though

his value is y ≥ zt−1. A bid below zt−1 is not optimal. We need to distinguish

between two cases: (i) y ∈ [zt−1, x] and (ii) y > x, since his payoff function

differs in each case. In what follows, we denote the payoff to a bid of y as

πLt (y, x|zt−1) if y ∈ [zt−1, x] and as πHt (y, x|zt−1) if y ≥ x.

Case (i): Consider a bid y ∈ [zt−1, x]. If zt ∈ [zt−1, y] the bidder continues

to round t + 1 where, by the induction hypothesis, he optimally bids x and

he has an expected payoff of Πt+1(x|zt−1, zt). If zt ≥ y he obtains a payoff of

αN−t+1x+ βθt (y)− Σt−1
j=1

1
N−jdj in round t. Hence his payoff is

πLt (y, x|zt−1) =
∫ y
zt−1

Πt+1(x|zt−1, zt)g
(N−1)
t (zt|zt−1)dzt

+
∫ x̄
y
u
(
αN−t+1x+ βθt (y)− Σt−1

j=1
1

N−jdj

)
g

(N−1)
t (zt|zt−1)dzt.

Differentiating with respect to y yields

∂πLt (y, x|zt−1)

∂y
= [Πt+1(x|zt−1, y)− u

(
αN−t+1x+ βθt (y)− Σt−1

j=1
1

N−jdj

)
]g

(N−1)
t (y|zt−1)

+u′
(
αN−t+1x+ βθt (y)− Σt−1

j=1
1

N−jdj

)
βθ′t (y)(1−G(N−1)

t (y|zt−1)).

Rewriting

∂πLt (y, x|zt−1)

∂y
= [Πt+1(x|zt−1, y)− 1−e−θ[αN−t+1x+βθt (y)−Σt−1

j=1
1

N−j dj ]

θ
]g

(N−1)
t (y|zt−1)

+e−θ[αN−t+1x+βθt (y)−Σt−1
j=1

1
N−j dj ]βθ′t (y)(1−G(N−1)

t (y|zt−1)).

Using the expression for βθ′t (y) from the necessary condition for equilibrium

from Proposition 4 for round t and substituting yields

∂πLt (y, x|zt−1)

∂y
= [Πt+1(x|zt−1, y)− 1−e−θ[αN−t+1x+βθt (y)−Σt−1

j=1
1

N−j dj ]

θ
]g

(N−1)
t (y|zt−1)

−e−θαN−t+1(x−y) 1
θ

[
e−θ[αN−t+1y+βθt (y)−

∑t−1
j=1

1
N−j dj ]

−e−θ[αN−ty+βθt+1(y)− 1
N−tβ

θ
t (y)−

∑t−1
j=1

1
N−j dj ]

]
g

(N−1)
t (y|zt−1).

49



Simplifying yields ∂πLt (y, x|zt−1)/∂y as

(
Πt+1(x|zt−1, y)− 1

θ

[
1− e−θ[αN−ty+αN−t+1(x−y)+βθt+1(y)− 1

N−tβ
θ
t (y)−

∑t−1
j=1

1
N−j dj ]

])
g

(N−1)
t (y|zt−1).

We show that ∂πLt (y, x|zt−1)/∂y > 0 for y < x. If the bid at round t is y,

then Πt+1(x|zt−1, y) is the equilibrium payoff at round t+ 1 of a bidder with

value x. If he were to deviate from equilibrium and bid y at round t+1, then

he obtains position N − t (since y is the smallest value of a rival bidder) and
he receives βθt+1(y) at round t+ 1 and pays 1

N−tβ
θ
t (y) +

∑t−1
j=1

1
N−jdj. By the

induction hypothesis, this payoff is less than his equilibrium payoff, i.e.,

Πt+1(x|zt−1, y) >
1

θ

[
1− e−θ[αN−tx+βθt+1(y)− 1

N−tβ
θ
t (y)−

∑t−1
j=1

1
N−j dj ]

]
.

Since αN−t > αN−t+1 and x > y we have

αN−tx > αN−ty + αN−t+1(x− y)

and hence

1

θ

[
1− e−θ[αN−tx+βθt+1(y)− 1

N−tβ
θ
t (y)−

∑t−1
j=1

dj
N−j ]

]
>

1

θ

[
1− e−θ[αN−ty+αN−t+1(x−y)+βθt+1(y)− 1

N−tβ
θ
t (y)−

∑t−1
j=1

dj
N−j ]

]
.

Thus Πt+1(x|zt−1, y) is greater than the RHS of this inequality and hence

∂πLt (y, x|zt−1)/∂y > 0 for y < x.

Case (ii): Consider a bid y ≥ x. If zt ∈ [zt−1, x], then the bidder continues

to round t+ 1 and, by part 1 of induction hypothesis, he bids x and obtains

Πt+1(x|zt−1, zt). If zt ∈ [x, y], then he continues to round t + 1 and, by part

2 of the induction hypothesis, he bids zt and obtains a payoff of

αN−tx+ βθt+1(zt)−
1

N − tβ
θ
t (zt)− Σt−1

j=1

1

N − j dj.

If zt > y then in round t he obtains position N − t + 1 and his payoff is

αN−t+1x+ βθt (y)− Σt−1
j=1

1
N−jdj. Thus his expected payoff at round t is

πHt (y, x|zt−1) =
∫ x
zt−1

Πt+1(x|zt−1, zt)g
(N−1)
t (zt|zt−1)dzt

+
∫ y
x
u(αN−tx+ βθt+1(zt)− 1

N−tβ
θ
t (zt)− Σt−1

j=1
1

N−jdj)g
(N−1)
t (zt|zt−1)dzt,

+
∫ x̄
y
u
(
αN−t+1x+ βθt (y)− Σt−1

j=1
1

N−jdj

)
g

(N−1)
t (zt|zt−1)dzt.
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Differentiating with respect to y yields

∂πHt (y, x|zt−1)

∂y
=

 u
(
αN−tx+ βθt+1(y)− 1

N−tβ
θ
t (y)− Σt−1

j=1
1

N−jdj

)
−u
(
αN−t+1x+ βθt (y)− Σt−1

j=1
1

N−jdj

)  g(N−1)
t (y|zt−1)

+u′
(
αN−t+1x+ βθt (y)− Σt−1

j=1

1

N − j dj
)
βθ′t (y)(1−G(N−1)

t (y|zt−1)).

Using the expression for βθ′t (y) from the necessary condition for equilibrium

from Proposition 4 for round t and substituting gives ∂πHt (y, x|zt−1)/∂y as[
u(αN−tx+ βθt+1(y)− 1

N−tβ
θ
t (y)− Σt−1

j=1
1

N−jdj)

−u(αN−t+1x+ βθt (y)− Σt−1
j=1

1
N−jdj)

]
g

(N−1)
t (y|zt−1)

−
u′(αN−t+1x+ βθt (y)− Σt−1

j=1
1

N−jdj)

u′(αN−t+1y + βθt (y)− Σt−1
j=1

1
N−jdj)

×
[
u(αN−ty + βθt+1(y)− 1

N−tβ
θ
t (y)− Σt−1

j=1
1

N−jdj)

−u(αN−t+1y + βθt (y)− Σt−1
j=1

1
N−jdj)

]
g

(N−1)
t (y|zt−1).

Since bidders have CARA preferences, then ∂πHt (y, x|zt−1)/∂y is

1

θ

[
e−θ[αN−t+1x+βθt (y)−Σt−1

j=1
1

N−j dj ]

−e−θ[αN−tx+βθt+1(y)− 1
N−tβ

θ
t (y)−Σt−1

j=1
1

N−j dj ]

]
g

(N−1)
t (y|zt−1)

−e−θαN−t+1(x−y) 1

θ

[
e−θ[αN−t+1y+βθt (y)−Σt−1

j=1
1

N−j dj ]

−e−θ[αN−ty+βθt+1(y)− 1
N−tβ

θ
t (y)−Σt−1

j=1
1

N−j dj ]

]
g

(N−1)
t (y|zt−1).

=
1

θ

[
e−θ[αN−ty+αN−t+1(x−y)+βθt+1(y)− 1

N−tβ
θ
t (y)−Σt−1

j=1
1

N−j dj ]

−e−θ[αN−tx+βθt+1(y)− 1
N−tβ

θ
t (y)−Σt−1

j=1
1

N−j dj ]

]
g

(N−1)
t (y|zt−1).

This has the same sign as

e−θαN−t+1(x−y) − e−θαN−t(x−y),

which is negative since αN−t > αN−t+1 and y > x.

We have shown if x ≥ zt−1 then x ∈ arg maxy πt(y, x|zt−1). If x < zt−1,

then y ≥ zt−1 (since any bid below zt−1 is strictly dominated) implies y ≥
zt−1 > x and the above argument establishes bidding zt−1 is optimal since

∂πt(y, x|zt−1)/∂y < 0 for all y ≥ zt−1, i.e., zt−1 ∈ arg maxy πt(y, x|zt−1).
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This establishes the two-part claim for round t, and completes the proof by

induction. �

Proof of Proposition 7:We first show that for each t we have that β0
t (x) >

βθt (x) for θ > 0 and x < x̄. Consider round t = N − 1. Since e−x is convex,

Jensen’s inequality implies

e
−E
[
θ(α1−α2)Z

(N)
N−1|Z

(N)
N−1>x>Z

(N)
N−2

]
< E

[
e−θ(α1−α2)Z

(N)
N−1|Z(N)

N−1 > x > Z
(N)
N−2

]
.

Taking the log of both sides and then dividing both sides by −2θ yields

β0
N−1(x) =

1

2
E
[
(α1 − α2)Z

(N)
N−1|Z

(N)
N−1 > x > Z

(N)
N−2

]
> − 1

2θ
ln
{
E
[
e−θ(α1−α2)Z

(N)
N−1 |Z(N)

N−1 > x > Z
(N)
N−2

]}
= βθN−1(x).

Assume that β0
t+1(x) > βθt+1(x) for x < x̄. We show that β0

t (x) > βθt (x) for

x < x̄. For z < x̄ we have

(αN−t − αN−t+1) z + β0
t+1(z) > (αN−t − αN−t+1) z + βθt+1(z).

Multiplying through by −θ and applying the exponential function to both
sides gives

e−θ[(αN−t−αN−t+1)z+β0
t+1(z)] < e−θ[(αN−t−αN−t+1)z+βθt+1(z)].

Hence

E

[
e
−θ
[
(αN−t−αN−t+1)Z

(N)
t +β0

t+1(Z
(N)
t )

]
|Z(N)

t > x > Z
(N)
t−1

]
< E

[
e
−θ
[
(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )

]
|Z(N)

t > x > Z
(N)
t−1

]
.

By Jensen’s inequality, we have

e
−θE

[
(αN−t−αN−t+1)Z

(N)
t +β0

t+1(Z
(N)
t )|Z(N)

t >x>Z
(N)
t−1

]
< E

[
e
−θ
[
(αN−t−αN−t+1)Z

(N)
t +β0

t+1(Z
(N)
t )

]
|Z(N)

t > x > Z
(N)
t−1

]
,
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and thus

e
−θE

[
(αN−t−αN−t+1)Z

(N)
t +β0

t+1(Z
(N)
t )|Z(N)

t >x>Z
(N)
t−1

]
< E

[
e
−θ
[
(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )

]
|Z(N)

t > x > Z
(N)
t−1

]
.

Taking the log of both sides and then multiplying both sides by −(N −
t)/((N − t+ 1) θ) yields β0

t (x) > βθt (x). We have shown for each t that

β0
t (x) > βθt (x) for θ > 0 and x < x̄.

Next we show that for each t we have that βθt (x) > β
t
(x) for θ > 0 and

x < x̄. Consider t = N − 1. For z > x we have

e−θ(α1−α2)z < e−θ(α1−α2)x,

and hence

E
[
e−θ(α1−α2)Z

(N)
N−1|Z(N)

N−1 > x > Z
(N)
N−2

]
< e−θ(α1−α2)x.

Taking the log of both sides and then dividing both sides by −2θ yields

βθN−1(x) = − 1

2θ
ln
{
E
[
e−θ(α1−α2)Z

(N)
N−1|Z(N)

N−1 > x > Z
(N)
N−2

]}
>
α1 − α2

2
x = β

N−1
(x).

Assume that βθt+1(x) > β
t+1

(x) for x < x̄. We show that βθt (x) > β
t
(x)

for x < x̄. For z > x we have

e−θ[(αN−t−αN−t+1)z+βθt+1(z)] < e
−θ
[
(αN−t−αN−t+1)x+β

t+1
(x)
]
,

and hence

E

[
e
−θ
[
(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )

]
|Z(N)

t > x > Z
(N)
t−1

]
< e

−θ
[
(αN−t−αN−t+1)x+β

t+1
(x)
]
.

By the analogous argument as above, we obtain

βθt (x) = − N − t
(N − t+ 1) θ

ln
{
E
[
e−θ[(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )]|Z(N)

t > x > Z
(N)
t−1

]}
>

N − t
N − t+ 1

[
(αN−t − αN−t+1)x+ β

t+1
(x)
]

= β
t
(x),
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where the last equality follows since

N − t
N − t+ 1

[
(αN−t − αN−t+1)x+ β

t+1
(x)
]

=
N − t

N − t+ 1
(αN−t − αN−t+1)x+

N − t
N − t+ 1

(
N−t−1∑
m=1

1

N − tαm −
N − t− 1

N − t αN−t

)
x

=

(
N−t−1∑
m=1

1

N − t+ 1
αm −

N − t− 1

N − t+ 1
αN−t +

N − t
N − t+ 1

(αN−t − αN−t+1)

)
x

=

(
N−t∑
m=1

1

N − t+ 1
αm −

N − t
N − t+ 1

αN−t+1

)
x

= β
t
(x).

�

Proof of Proposition 8: We first show that for each t we have βθ
′

t (x) <

βθt (x) for θ′ > θ and x < x̄. Consider round t = N − 1. Since f(s) = s
θ
θ′ is

concave, by Jensen’s inequality we have(
E
[
e−θ

′(α1−α2)Z
(N)
N−1|Z(N)

N−1 > x > Z
(N)
N−2

]) θ
θ′
> E

[
e−θ(α1−α2)Z

(N)
N−1|Z(N)

N−1 > x > Z
(N)
N−2

]
.

Taking the log of both sides and then dividing both sides by −2θ yields

βθN−1(x) = − 1

2θ
ln
(
E
[
e−θ(α1−α2)Z

(N)
N−1|Z(N)

N−1 > x > Z
(N)
N−2

])
> − 1

2θ′
ln
(
E
[
e−θ

′(α1−α2)Z
(N)
N−1|Z(N)

N−1 > x > Z
(N)
N−2

])
= βθ

′

N−1(x).

Assume that βθ
′

t+1(x) < βθt+1(x) for x < x̄. We show that βθ
′

t (x) < βθt (x)

for x < x̄. By Jensen’s inequality we have

E
[
e−θ[(αN−t−αN−t+1)Z

(N)
t +βθ

′
t+1(Z

(N)
t )]|Z(N)

t > x > Z
(N)
t−1

]
<

(
E
[
e−θ

′[(αN−t−αN−t+1)Z
(N)
t +βθ

′
t+1(Z

(N)
t )]|Z(N)

t > x > Z
(N)
t−1

]) θ
θ′

and since βθ
′

t+1(x) < βθt+1(x) then

E
[
e−θ[(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )]|Z(N)

t > x > Z
(N)
t−1

]
< E

[
e−θ[(αN−t−αN−t+1)Z

(N)
t +βθ

′
t+1(Z

(N)
t )]|Z(N)

t > x > Z
(N)
t−1

]
.
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Hence

E
[
e−θ[(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )]|Z(N)

t > x > Z
(N)
t−1

]
<

(
E
[
e−θ

′[(αN−t−αN−t+1)Z
(N)
t +βθ

′
t+1(Z

(N)
t )]|Z(N)

t > x > Z
(N)
t−1

]) θ
θ′
.

Taking the log of both sides and multiplying both sides by−(N−t)/((N − t+ 1) θ)

yields

βθ
′

t (x) = − N − t
(N − t+ 1) θ′

ln
{
E
[
e−θ

′[(αN−t−αN−t+1)Z
(N)
t +βθ

′
t+1(Z

(N)
t )]|Z(N)

t > x > Z
(N)
t−1

]}
< − N − t

(N − t+ 1) θ
ln
{
E
[
e−θ[(αN−t−αN−t+1)Z

(N)
t +βθt+1(Z

(N)
t )]|Z(N)

t > x > Z
(N)
t−1

]}
= βθt (x).

Next we show that for each t we have limθ→∞ β
θ
t (x) = β

t
(x) for all x. For

t = N−1 the limit is obtained directly. Specifically, after applying l’Hopital’s

rule, we see that

lim
θ→∞

βθN−1(x) =
1

2
(α1 − α2) lim

θ→∞

∫ x̄
x
ze−θ(α1−α2)zg

(N)
N−1(z|x)dz∫ x̄

x
e−θ(α1−α2)zg

(N)
N−1(z|x)dz

where g(N)
N−1(z|x) = 2f(z)(1 − F (z))/(1 − F (x))2. Van Essen and Wooders

(2016, p. 239) established that

lim
θ→∞

∫ x̄
x
ze−θzg

(N)
N−1(z|x)dz∫ x̄

x
e−θzg

(N)
N−1(z|x)dz

= x,

which implies that

lim
θ→∞

∫ x̄
x
ze−θ(α1−α2)zg

(N)
N−1(z|x)dz∫ x̄

x
e−θ(α1−α2)zg

(N)
N−1(z|x)dz

= x,

Hence,

lim
θ→∞

βθN−1(x) =
1

2
(α1 − α2)x = β

N−1
(x).

Observe that βθN−1(x) is continuous in x on the compact set [0, x̄] for each

θ, it converges pointwise to β
N−1

(x), which is continuous on [0, x̄], and it

is decreasing in θ. Hence βθN−1 converges uniformly to βN−1
on [0, x̄] by

Theorem 7.12 of Rudin (1976).
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Assume that βθt+1(x) converges uniformly to β
t+1

(x) on [0, x̄]. We show

that βθt (x) converges uniformly to β
t
(x). The CARA bid function in round

t is

βθt (x) = − N − t
(N − t+ 1) θ

ln

(∫ x̄

x

e−θ[(αN−t−αN−t+1)z+βθt+1(z)]g
(N)
t (z|x)dz

)
.

Let ∆ > 0 be arbitrary. Since βθt (x) is decreasing in θ and since βθt+1 → β
t+1

uniformly as θ →∞, then there is a θ̄ such that for all θ ≥ θ̄ we have

βθt+1(x) ≤
N−t−1∑
m=1

m

N − t (αm − αm+1)x+ ∆

for x ∈ [0, x̄]. Define

β̄
θ
t (x) ≡ − N − t

(N − t+ 1) θ
ln

(∫ x̄

x

e−θ[z(αN−t−αN−t+1+
∑N−t−1
m=1

m
N−t (αm−αm+1))+∆]g

(N)
t (z|x)

)
dz.

Then βθt (x) ≤ β̄
θ
t (x) for θ ≥ θ̄ and x ∈ [0, x̄]. By Proposition 7 we have

β
t
(x) ≤ βθt (x) and thus

β
t
(x) ≤ βθt (x) ≤ β̄

θ
t (x)

for θ ≥ θ̄ and x ∈ [0, x̄].

We establish that βθt (x) converges pointwise to β
t
(x) for each x ∈ [0, x̄].

Define

C = αN−t − αN−t+1 +
N−t−1∑
m=1

m

N − t (αm − αm+1) .

Applying L’Hopital’s rule and using the same argument as for round N − 1,

we have

lim
θ→∞

β̄
θ
t (x) =

N − t
N − t+ 1

lim
θ→∞

∫ x̄
x

(zC + ∆)e−θ(zC+∆)g
(N)
t (z|x)dz∫ x̄

x
e−θ(zC+∆)g

(N)
t (z|x)dz

=
N − t

N − t+ 1

(
C lim

θ→∞

∫ x̄
x
ze−θzCg

(N)
t (z|x)dz∫ x̄

x
e−θzCg

(N)
t (z|x)dz

+ ∆

)
=

N − t
N − t+ 1

(Cx+ ∆) ,
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where the last inequality holds by Van Essen and Wooders (2016). Substi-

tuting for C and simplifying yields

lim
θ→∞

β̄
θ
t (x) = β

t
(x) +

N − t
N − t+ 1

∆.

Since the inequality

β
t
(x) ≤ lim

θ→∞
βθt (x) ≤ lim

θ→∞
β̄
θ
t (x) = β

t
(x) +

N − t
N − t+ 1

∆

holds for arbitrary ∆ > 0, it follows that limθ→∞ β
θ
t (x) = β

t
(x). By the same

argument as for βθN−1, we have that β
θ
t converges uniformly to βt on [0, x̄].

�
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